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Section I: Knowledgebase Concept and Workshop 

The Department of Energy (DOE) Genomic Science program within the Office of Biological and 
Environmental Research (BER) supports science that seeks to achieve a predictive 
understanding of biological systems. By revealing the genetic blueprint and fundamental 
principles that control plant and microbial systems relevant to DOE missions, the Genomic 
Science program (genomicscience.energy.gov) is providing the foundational knowledge that 
underlies biological approaches to producing biofuels, sequestering carbon in terrestrial 
ecosystems, and cleaning up contaminated environments. 

Knowledgebase Vision and Background 

The emergence of systems biology as a research paradigm and approach for DOE missions has 
resulted in dramatic increases in data flow from new generations of experimental technologies 
in areas such as genomics and imaging. While some resource centers are generating large 
datasets with workflows designed to answer specific scientific questions, there is also a great 
increase in data production, generally from individual laboratories. New scientific questions 
arise and can be answered by combining and analyzing such data across laboratories and 
projects. Great value has derived from the ability to combine sequence and structure data 
across producers, and in some research communities, such as the yeast field, general access to 
functional genomic data has greatly accelerated discovery and technology development. Over 
the last decade, BER—through its Genomic Science program—has sought to solve bioenergy, 
environmental remediation, and carbon sequestration challenges that demand understanding 
biological activities exhibited by complex populations and the individuals within them. Since we 
seek to understand the molecular basis of these dynamics and activities on scales from 
individual genomes through cellular networks to community function and evolution, these 
projects are generating multiscale information that could be organized more effectively to aid 
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the science of individual projects and to synergize data across projects with related missions. 
Perhaps even more important, the data from multiple, possibly unrelated programs could be 
flexibly reorganized and analyzed to aid new scientific discoveries and provide insight to 
researchers in environmental microbiology and biotechnology generally. 

Enabling the community to serve, query, combine, and analyze these diverse data types is 
therefore imperative, as is building a blueprint and system to enable the design, 
implementation, and use of new analytical tools and frameworks for working with such data. To 
manage and effectively use this ever-increasing volume and diversity of data, the Genomic 
Science program is developing the DOE Systems Biology Knowledgebase—an open, community-
driven cyberinfrastructure for sharing and integrating data, analytical software, and 
computational modeling tools. Historically, most bioinformatics efforts have been developed in 
isolation by people working on individual projects, resulting in isolated data and methods. An 
integrated, community-oriented informatics resource such as the Knowledgebase would 
provide a broader and more powerful tool for conducting systems biology research relevant to 
BER’s complex, multidisciplinary challenges in energy and environment. It also would be easily 
and widely applicable to all systems biology research. 

In general, a knowledgebase is an organized collection of data, organizational methods, 
standards, analysis tools, and interfaces representing a body of knowledge. For the DOE 
Systems Biology Knowledgebase, these interoperable components would be contributed and 
integrated into the system over time, resulting in an increasingly advanced and comprehensive 
resource. Other elements of the Knowledgebase vision are defined in a March 2009 report 
(genomicscience.energy.gov/compbio/) based on a DOE workshop that brought together 
researchers with many different areas of expertise, ranging from environmental science to 
bioenergy. The report highlights several roles the Knowledgebase will need to serve, including: 

 An adaptable repository of data and results from high-throughput experiments; 

 A collection of tools to derive new insights through data synthesis, analysis, and 
comparison; 

 A framework to test scientific understanding; 

 A heuristic capability to improve the value and sophistication of further inquiry; and 

 A foundation for prediction, design, manipulation, and, ultimately, engineering of 
biological systems. 

Beyond these perspectives from the last report, the Knowledgebase is now envisioned as a 
robust, flexible, and well-documented open architecture. This architecture would allow for both 
organized and distributed community development, facilitate the sharing of data and tools for 
data transfer, integration, query, analysis, and visualization, and be committed to 
interoperating with community resources and standards. 

The Knowledgebase would differ from current informatics efforts by integrating data and 
information across projects and laboratories—tracking diverse, multiscale biological data from 
the genome through molecular networks, to cellular populations and communities, to 
environmental function, and combining data centralization with distributed data. Integration 
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implies that the Knowledgebase be a community effort rather than a monolithic project 
overseen and contributed to by only a few people. The Knowledgebase also will need to be 
more standardized than today’s informatics resources. Although standardized components may 
not always be “cutting edge,” they will be more interoperable, enabling comparisons among 
different laboratories and thus yielding important new insights. Standardization will involve not 
only data but also experimental protocols. 

Another fundamental feature is that Knowledgebase development will have a more mature 
software engineering approach. In the past, biologists not necessarily trained in state-of-the-art 
computational techniques reasonably applied the computational tools of the day to their 
research. However, the dramatic increase in the amount of sequencing and other data being 
generated requires the support of a more robust computational infrastructure, with analyses 
that no longer are carried out in an ad hoc manner. Many current development efforts are 
based on computational technologies created 10 to 15 years ago. More modern analytical 
technologies are needed. To be useful, these new techniques must be developed by the entire 
research community rather than by informatics specialists working in isolation. 

To establish the Knowledgebase as a community effort, several basic principles need to be 
considered. One is open access—the concept that data and methods contributed to the system 
will be available for anyone to use. Another is open source or open contribution, meaning that 
source code is managed in an open environment and is freely available to access, modify, and 
redistribute under the same terms. Perhaps the most important concept is open development, 
which would allow anyone to contribute to Knowledgebase development under organizational 
guidelines. Analogous to submitting a publication, this would involve a review process by an 
authoritative group that would determine if a particular contribution meets established criteria. 
In such an environment, different groups would work together on a common piece of software 
to meet common needs, the review process would facilitate integration into the 
Knowledgebase and quality control, and the product would be better than what an individual 
alone could create. 

Several existing systems and applications can serve as reference models for thinking about 
Knowledgebase development. Exemplifying the concept of an open-source development is the 
computer operating system Linux, which is being built by a community of software developers 
working collaboratively to create a sophisticated and fairly successful system. Other familiar 
examples include iPhone or Google apps that enable users to pick and choose the kinds of 
features and capabilities they want and integrate them into a phone or other device. We are 
familiar with user interfaces that show layering of data from Google maps and Google Earth 
annotations (e.g., locations of landmarks and restaurants). Experimental design and research in 
the future will be conducted in the context of a user model similar to these successful systems. 
As research users gain new insights in systems biology from experiments and analyses, their 
interaction with the Knowledgebase populates new detail in the biological systems, forming the 
basis for new referential insight. 

Wikipedia development also is open source and open development, allowing individuals or 
groups to contribute content. It has an editorial model, and, over time, the quality of its content 
evolves and improves. For the Knowledgebase, such an open-development environment 
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conceivably would enable noncomputing experts to play a role in the project’s development 
and evolution. 

Although these historical examples are approximations of the Knowledgebase vision, they 
provide a notion of possibilities in their commonly understood characteristics of flexible 
community development, data layering, editorial control, and peer review integration. The 
take-away lesson is that we see the initial Knowledgebase development like an operating 
system kernel that provides a platform on which open contribution of new applications can 
occur while the Knowledgebase simultaneously is managed to provide core functions like 
protection of legacy data and development of the underlying access and sharing model and 
architectural methods. 

Workshop Description, Goals, Inputs, and Outputs 

Although the 2009 Knowledgebase report describes a vision and long-term objectives for the 
Knowledgebase, it does not provide details about a plan to implement the system. To that end, 
DOE has launched an R&D project to establish the requirements for the Knowledgebase and to 
outline a plan for implementing them. As part of this project, DOE is sponsoring a series of 
community workshops. The first—held in conjunction with the November 2009 
Supercomputing conference in Portland, Oregon—explored the potential for applying the cloud 
computing approach to systems biology research. The second workshop—held prior to the 
January 2010 Plant and Animal Genome meeting—addressed the Knowledgebase requirements 
necessary for developing data capabilities for plants. The output for these and subsequent 
workshops is now or will soon be posted online at 
www.systemsbiologyknowledgebase.org/workshops. As the third event in this series, the DOE 
Genomic Science Microbial Systems Biology Knowledgebase workshop was held Feb. 9–10, 
2010, during the DOE Genomic Science Contractor-Grantee meeting in Crystal City, Virginia. 

The goals of this workshop were to outline the near-, mid-, and long-term trajectory of 
microbial sciences for energy and environment and to map the associated workflows and data 
integration methods that can inform Knowledgebase specifications and requirements. 
Participants were asked to provide responses to six charge questions: 

1. For systems biology of interest to genomic sciences, what are the scientific objectives 
that a knowledgebase could address in both a 5-year and longer time frame? 

2. What are the key workflows that could be developed to accomplish these goals? Provide 
comprehensive usage examples that lead to scientific objectives. 

3. What types of data are required to accomplish these objectives? 

4. What bottlenecks to data integration and data usability need to be addressed to 
accomplish these goals? 

5. What bottlenecks in bioinformatic and computational algorithms need to be addressed 
to accomplish these goals? 

6. What would success look like? What would the benefit be? 
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The workshop featured presentations discussing the current, near-, and long-term prospects for 
microbial systems biology research in the context of the Knowledgebase. Formal presentations 
were given by Robert Cottingham (Oak Ridge National Laboratory) describing Knowledgebase 
background and objectives, by Robert Kelly (North Carolina State University) on the “Near-Term 
Prospects for Functional Microbial Genomics: Moving Beyond the Monoculture Paradigm,” and 
by Adam Arkin (University of California, Berkeley, and Lawrence Berkeley National Laboratory) 
on “From Pathways to Populations and Back Again: Long-Term Prospects for the Microbial 
Systems Biology Knowledgebase.” 

Kelly indicated the rapidity with which new genome sequence information appears in public 
databases is presenting a growing challenge for the data storage, analysis, and utilization 
necessary to foster scientific and technological advances. The systems biology framework has 
arisen in response to this challenge, but new computing strategies are needed to take 
advantage of this new context for examining microbial biology. 

Kelly also pointed out that most of what is now known about microbial biology was learned 
from the study of pure laboratory cultures. The “monoculture” paradigm has been quite 
productive and will continue to be at the heart of microbiology. However, monocultures are not 
representative of how microbial systems exist in nature. To this end, metagenomics has 
provided a means for examining microbial complexity, but complementary functional 
information is still needed to understand the “metaphenotype.” 

Illustrating the need for microbial community studies is the hypothesis that a significant portion 
of every microbial genome encodes elements designed to regulate and mediate intercellular 
interactions. These elements may not be responsive in laboratory monocultures and may be 
triggered only by certain environmental and ecological stimuli. Do these genomic elements 
exist? What are the studies needed to make this determination? If these genomic elements 
exist, how can they be identified, characterized, and manipulated? If multispecies systems are 
to be examined via systems biology, what are the consequences in terms of experimental 
design and analysis? What is the best way to construct a systems biology knowledgebase for 
multispecies (multiphenotype) investigations? 

Over the next several years, efforts are needed to link the complexity reflected in 
metagenomes to what is already known from monoculture studies. Kelly indicated this learning 
curve will necessarily start with relatively simple systems because even co-cultures can exhibit 
phenotypes not easily predicted from pure culture information. Extending functional microbial 
genomics beyond monocultures was discussed with a view toward the integration of 
experimental design, experimental methods, and data analysis strategies. Kelly used 
hyperthermophile communities to illustrate some challenges that arise when moving beyond 
monocultures. 

In his presentation, Arkin indicated the grand challenge to predict phenotype from genotype is 
particularly difficult in the microbial world. At its core, this challenge seeks to understand the 
principles of biological architecture and function sufficient for predicting behavior and, of 
course, for changing it. A systems biology knowledgebase should grow into an indispensible 
tool for molecular, environmental, evolutionary, medical, and epidemiological microbiologists 
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and for biotechnologists to understand and engineer their systems. However, there are 
challenges in accomplishing this that are found in few other systems. 

Microbes rarely work alone but operate in complex communities that form spatial and 
temporal webs of mutual support, parasitism, and predation. Perhaps unique to microbes and 
their communities are the astonishingly rapid mechanisms for evolution and the deeply 
intertwined ecology of mobile genetic elements that aid in the preservation, diversification, and 
dissemination of function and may be central drivers themselves of the architecture of 
microbial networks. 

The Knowledgebase, in the long term, will be faced with capturing and interrelating data about 
all these processes at scales from molecules to meters. Sequencing technologies reveal 
information on the identities of microbial players in these communities and can hone in on 
some aspects of gene expression. Structural techniques can provide key information on 
molecular identity and sometimes function. New imaging technologies can give us information 
on the arrangements and interactions among molecules, cells, and their environment. 
However, the complexity of the data increases greatly when moving beyond the sequence of 
single genomes and crystal structures of single proteins. The data also become far more 
conditional on unmeasured conditions and interactions and less precise and accurate 
metrologically, all of which present challenges for organizing and navigating this information. 
Arkin presented an example process outlining how such information could be assembled, 
navigated, and used in a knowledgebase. At each level, the challenges and acuteness of need 
for the community were described. 

In ensuing discussions at the workshop, emphasis was placed on establishing agreed-upon 
scientific objectives that will result in a successful, community-driven Knowledgebase. To build 
a system that helps achieve important scientific goals, informatics experts need input from and 
frequent dialogue with the research community on what these goals are, including how the 
research technologies, data types and quantities, and goals change over time (see Fig. 1.1. 
Knowledgebase R&D Project). 
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Fig. 1.1. Knowledgebase R&D Project: Scientific Objectives, Intense Collaboration Critical to Successful 
Knowledgebase Implementation Plan. The final product of this project, the Knowledgebase Implementation Plan, 
is being developed to incorporate the components and functionality necessary for the systems biology research 
community to meet its defined scientific objectives. To do this, the research and computing communities must 
work closely together to define—realistically and at a significant level of detail—the scientific objectives and 
experiment workflows (protocols) necessary for defining computing system requirements and design and for 
completing the implementation plan for a robust, durable Knowledgebase. 

Workshops, such as this one, provide opportunities to discuss and identify appropriate and 
community-generated scientific objectives. Any and all input was welcomed, and participants 
were encouraged to contribute to the final R&D report at 
www.systemsbiologyknowledgebase.org. To be effective, scientific objectives must be credible, 
impactful, and achievable in a few years. Participants were asked to discuss objectives based on 
current research activities and consider candidates and priorities to recommend. 

Several examples of potential scientific objectives related to microbes were presented to 
stimulate discussion. The first was improved prediction of gene regulatory networks based on 
integrating genomic sequences from phylogenetically related organisms with high-resolution 
expression (RNA-Seq) data from multiple biological states. Suppose the goal was to predict 
gene regulation in a particular situation. What are the Knowledgebase capabilities necessary for 
predicting gene regulation in a subsystem? One need would be the ability to upload raw RNA-
Seq sequence data or provide access it. Another need would be tools to process raw sequence 
into standard formats. A third involves data visualization capabilities. 

The limit in the future might be how many biological samples are available to be assayed by 
RNA-Seq and not the availability or cost of the technique. As cost rapidly declines, it is 
conceivable that thousands of states could be measured. From plots of expression profiles, 
genes that are statistically represented in a particular biological state can be readily visualized. 
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Which genes are in probable states or pathways that are of particular research interest? This 
should all be readily available to any researcher. Even small regulatory sequences are visible. 
Imagine doing RNA-Seq analysis on a set of phylogenetically related organisms and comparing 
them based on genomic structure. This new data will reinforce past experiments in these same 
organisms. Based on the alignments, we can find promoters and make predictions about gene 
regulatory binding sites. This illustrates the type of understanding achievable with a 
knowledgebase characterized by good algorithms and data integration technologies that have 
been built up over time. When using Google maps to find the nearest Starbucks location, users 
rely on a series of technologies that have been developed in such a way. A set of standards 
allows this information to be mapped together, enabling the system to generate the 
appropriate directions. The data integration underlying Google maps is analogous to many of 
the current challenges associated with integrating biological data. 

A second example of a scientific objective would be integrating phenotypic response with 
specific genotypes or pathways so that regulatory or genetic changes could be predictably 
associated with microbial behavior and response. The idea of relating phenotypes to genotypes 
and putting that information in context is of wide interest. What are the sources of data? How 
do we transform them? What are the analytical steps, and what tools are currently available? 

As with any scientific objective considered for the Knowledgebase, these two examples would 
be evaluated to determine if they are credible, impactful, and achievable. If a particular 
objective meets these three criteria, then community input would help set priorities for the 
development and implementation timeline of the Knowledgebase. 

Section II: Workflows—Knowledgebase Use Cases 

Workflows as a Bridge from Bench to Computer 

The focus of this workshop, particularly on the second day, was on creating workflows. In 
research, a scientific objective is satisfied by creating hypotheses and doing one or more 
experiments depending on the scope of the objective. For every experiment, there are 
rationales, protocols to be executed, a number of data inputs (data sources) and outputs 
(results), and analysis tools. Workflows describe this information. Detailed workflows are 
bridges between the research and computing communities and thus are key to translating 
research into computing requirements that will most effectively advance the science. 

Workflows provide important details for Knowledgebase design, both in terms of the 
underlying data as well as the experimental or analytical objective. Knowledgebase architecture 
will have layers such as data repositories, workflow management, and output visualization, all 
of which relate to workflows developed by the scientific community participating in this 
Knowledgebase development process. Workflows are essentially communication mechanisms 
that exchange ideas and information between the researchers and those who actually build the 
computing system. Included in this report are six workflows drafted to satisfy research 
objectives important in DOE systems biology. These workflows encompass diverse problem-
solving methodologies representative of the broad scientific community and are works in 
progress—presented here to stimulate discussions between the research and bioinformatics 
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communities so that robust computing system requirements and an implementation plan can 
be developed. 

Developing an executable Knowledgebase Implementation Plan must be a community effort—
involving both the experimental and computing research communities—where we integrate 
across projects and research laboratories. Fully developed, robust workflows will foster this 
integration and lead to a more standardized approach. To handle a new level of biological 
complexity, we need to embrace more strategic software engineering approaches; we can no 
longer afford to create isolated and ad hoc systems. 

As the key products of this workshop, workflows are critical inputs to the participants of the 

final workshop (June 12, 2010, Crystal City, Virginia). Prior to and during the final workshop, 
representatives from the computing and biological research communities will work closely 
together to refine the scientific objectives and workflows and to translate the workflows into 
computing system requirements. These requirements will form the basis of the Knowledgebase 
design—a prerequisite to the Knowledgebase Implementation Plan, which is the final product 
of the DOE Systems Biology Knowledgebase Research and Development Project. 

The workflows described in this section are critical to the success of systems biology research 
and reflect the data inputs, outputs, and experiments being carried out in the DOE-sponsored 
research community. Over the next several months, assessments will be made to ensure that 
the highest priority workflows, as identified by community consensus, will be included in the 
Knowledgebase Implementation Plan. The workflows generated in this workshop are: 

1. Metabolic Network Reconstruction (Ines Thiele) 

2. Metabolic Flux Analysis via Isotope Labeling (Hector Garcia Martin) 

3. Inference of Gene Regulatory Networks (Adam Arkin and Nitin Baliga) 

4. Signaling (Aindrila Mukhopadhyay and Loren Hauser) 

5. Structural Biology (Paul Adams) 

6. Imaging Bioinformatics (Bahram Parvin) 

To foster further interactions among the biology research communities, both experimental and 
computational, most of these have been included as originally submitted as a snapshot in time 
showing the current range of thought on what a workflow is and how the concept relates to 
various researchers and areas of research. [Note: An additional workflow on microbial 
community science is under development and will be available in May. This workflow is based 
on discussions from the Knowledgebase workshop held in conjunction with the DOE Joint 
Genome Institute’s annual user meeting (March 23, 2010). Workflows associated with the 
microbial community scientific objectives will be discussed by the interdisciplinary participants 
at the June Knowledgebase workshop where Knowledgebase system requirements will be 
discussed and drafted.] 

To facilitate workflow development, participants in this workshop were instructed to focus on 
describing several workflow components: data and sources (inputs), process steps 
(transformation rules or algorithms), and results or output. They also were asked to explain why 
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the workflow is important to the research endeavor and how it might be improved. As an 
example, consider the first workflow on Metabolic Network Reconstruction starting on p. 11. 
This example lists input data and even outlines how to obtain it. The process diagram 
associated with this workflow identifies each process step (see Figure 1. Detailed Workflow for 
Metabolic Network Reconstructions, p. 12). Many of these steps are common bioinformatic 
transformations that could readily be included in a future Knowledgebase. As the authors note, 
many steps are not precise and require some type of manual intervention such as curation. This 
identifies areas for improvement in either the underlying data or a need for better standards. 
Some of the process steps are experimental and produce specific results. Again, issues of data 
quality and accuracy can be important. Although not entirely automatable, this process is of 
wide utility and interest. This presents an excellent example of a workflow that the research 
community could prioritize to focus on in the Knowledgebase. By having a range of researchers 
focused on the bottlenecks, there would likely be improvements not only for metabolic 
reconstruction, but for other areas of research that depend on similar process steps. 
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Workflow 1: Metabolic Network Reconstruction 

Summary 

The metabolism workflow consists of two parts: 

1. The metabolic network reconstruction protocol [1] and required data and 

2. The protocol to obtain fluxomic data required by the metabolic network 
reconstruction protocol. 

Genome-scale metabolic network reconstructions are biochemically, genetically, and 
genomically (BiGG) structured knowledgebases, the goal of which is to formally represent the 
metabolic activities of a specific organism. Genome-scale metabolic networks have been 
published for more than 30 organisms to date, though they are of varying quality and 
completeness. Reconstructions are useful because they can be mathematically converted into 
constraint-based models, allowing important predictive calculations like flux balance analysis to 
be performed. This comprehensive workflow details nearly 100 iterative steps in the following 
categories: 

1. Draft reconstruction 

2. Refinement of reconstruction 

3. Conversion of reconstruction into computable formats 

4. Network evaluation 

5. Data assembly and dissemination 

The output of this workflow is a highly curated, accurate, and comprehensive representation of 
biochemical transformation taking place in the organism of interest. It is not yet possible to 
automate all steps within the process without loss of accuracy or correctness. 

We also attached the comprehensive standard operating procedure (SOP) for biochemical 
network reconstruction [1] to this workflow. 

Input 
Required organism-specific data 

- Gene information (ID, coordinates, function) 

- Protein information (function, location, complex formation) 

- Enzymatic reaction (stoichiometry at cellular pH, substrate specificity, cofactor specificity, 
location, directionality) 

- Biomass composition (fraction of macromolecule, molecular composition of macromolecules) 

- Phenotyping data (growth medium composition, other growth conditions – e.g. temperature, 
pH, etc) 

- Knock-out strain information (growth phenotypes, other characteristics) 
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- P/O ratio 

How to obtain this information 

Online resources: 

- Genome database containing genome annotation (i.e., locus ID, gene coordinates, (putative) 
annotation) – e.g., GOLD, TIGR, SEED, etc. 

- Biochemical reaction database for metabolic reactions – e.g., KEGG, BRENDA 

- Transport database for transport reaction mechanisms – e.g., Transport DB 

- Organism-specific databases – e.g., EcoCy, PyloriGene, GeneCards 

- Protein location prediction – e.g., PSORT, PA-SUB 

- Thermodynamic information (estimation of standard Gibbs free energy of formation (ΔfG′°) and 
of reaction (ΔrG′°)) – e.g., Web GCM 

- CMR database (estimation of DNA, RNA and protein composition) 

Tools: 

- Blast (if not or insufficient genome annotation is available), other gene function annotation tools 

Bibliome: 

- Primary and review literature about organism, its metabolic characteristics and its components 
(proteins, genes) 

- Biochemical textbooks 

- Organism-specific books 

Experiments: 

- Measurement of biomass composition (lipids, amino acids, nucleotides, cofactors, etc.) 

- Measurement of growth environments (e.g., biolog) 

- Measurement of single and double knockout mutants 

- Measurement of possible secretion products (and ratios) at different growth environments 

- Omics data: Metabolomics, fluxomics, proteomics, transcriptomics 

- Transcriptional regulatory information – which pathways are active under which conditions 
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Workflow Process to Metabolic Network Reconstruction 
The biochemical network reconstruction process is well established for metabolism and has 
been applied to many model organisms. The same approach can also be applied for other 
cellular functions, such as signaling [2, 3] and macromolecular synthesis [4]. The reconstruction 
process has been reviewed by numerous groups [5-8]. More recently, it has been formulated in 
the form of a standard operating procedure (SOP), or protocol, which explains the necessary 
stages and steps in great details [1]. Readers interested in reconstruction are advised to also 
refer to the SOP. 

The metabolic reconstruction process can be grouped into 5 major stages (see Figure 1): 

1. Generation of a draft reconstruction based on genome annotation and biochemical 
databases. Generally, the genome annotation is downloaded from a repository (e.g., 
NCBI) or the sequencing center (e.g., TIGR), and it should list at least a unique identifier, 
genome coordinates, and potential gene product function. Many of genome resources 
have also enzyme commission (EC) numbers for the genome encoded enzymes. These 
EC numbers along with key words can be used to compile a sublist of potential 
metabolic functions in the target organism. This list can be then used to obtain from 

 
Figure 1. Detailed Workflow for Metabolic Network Reconstructions. 
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biochemical databases (e.g., KEGG [9]. BRENDA [10]) the metabolic reactions catalyzed 
out by the enzymes. This list represents the draft reconstruction. The characteristics of 
this draft reconstruction are that it is incomplete (missing or wrong annotations) and it 
has an organism-independent reaction list: KEGG, as well as partially BRENDA, list all 
possible metabolic transformation catalyzed by a particular enzyme. However, the 
enzyme of the target organism may be able to bind to a subset of the listed substrates, 
or only one of the listed coenzymes can participate in the reaction in the target 
organism. This substrate and coenzyme pluripotency is one of the main reasons why 
manual curation is necessary. 

2. Refinement and expansion of the draft reconstruction through manual curation and 
extensive use of biochemical literature specific for the target organism. Starting from 
the draft reconstruction, every entry will be evaluated for the following criteria: 

a. Is the assigned function of the gene product correct? Use of biochemical literature, 
enzyme purification studies, a more detailed, phylogeny based annotation are 
helpful to answer this question. 

b. What is the substrate and coenzyme specificity of the target organism’s enzyme? 
Use of biochemical data, enzyme assays and protein structure will be helpful for 
answering this question. Finding evidence for this issue can be difficult. The use of 
closed relative organisms can be helpful. 

c. Is the biochemical reaction(s) mass- and charge balanced? Therefore, the neutral 
formula of each metabolite in the reaction has to be obtained (e.g., from KEGG or 
PubChem [11]). The charged formula has to be determined for each metabolite for a 
set pH value (e.g., pH 7.2) by determining the protonation state of each functional 
group within the metabolite. Software tools are available to assist this step (see 
Thiele and Palsson for details [1]). Once the charged formula has been determined 
for each metabolite, the occurrences of each element (e.g., C, H, N, S, O, P), as well 
as the charge, on the left- and right-hand side has to be counted. Stoichiometric 
coefficients may need to be adjusted such that the same amount of each element 
appears on both sides of the reaction. In some cases, protons (H+) or water may be 
added to the reactions to obtain a mass- and charge balanced reaction. 

d. The reaction directionality needs to be determined using thermodynamic 
information (refer for details to Thiele and Palsson [1], Feist et al [12], and Fleming 
et al [13]). 

e. Localization of reaction needs to be determined, especially, if multiple 
compartments are considered (e.g., human metabolic network accounts for eight 
cellular compartments, while many bacterial reconstructions account for two or 
three compartments, which are extracellular space, periplasm, and cytosol). 
Information about reaction location may be obtained from the genome sequence if 
it encodes for a signal peptide (for protein export) or by targeted experiments (e.g., 
using GFP tagging and fluorescence microscopy). 
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f. Gene-protein-reaction (GPR) association needs to be determined: while the genome 
annotation indicates that the gene product has a particular function, one should 
investigate if further gene products are needed for function, as is the case for 
protein complexes, or if alternate gene products exist that can carry out the 
function, i.e., isozymes. The reconstruction contains these GPR associations in form 
of Boolean rules: for example, a protein complex is encoded as ‘gene_A & gene_B’, 
while isozymes are encoded as ‘gene_A or gene_B’. Any combination of these rules 
is possible. Beside genome annotation, biochemical data, protein purification, 
and/or structural genomics can provide information regarding the GPR association. 

g. Confidence score, references, and notes: The steps listed above collect valuable 
information for a particular enzyme or function in the target organism. This 
information should be associated with the network reaction (e.g., in special columns 
in the spreadsheet). This information is thought to increase the traceability of 
reaction/gene evidence as well as highlight/summarize the amount of knowledge 
currently available. Often, a confidence scoring system is employed, which allows 
easy identification of high-confidence/low confidence reactions in the network. This 
is of particular value during the network debugging and evaluation stage (see 
below). The highest confidence score (4) is given to reactions that have biochemical 
evidence (e.g., protein purification, protein assays, protein structure information). A 
score of 3 is given if genetic data is available (e.g., knock-out mutant 
characterization, knock-in experiments, over-expression of a protein). A score of 2 is 
given if either physiological data (e.g., secretion products, growth capability on 
substrate) or (high confidence) sequence annotation is available. A low confidence 
score of 1 is given if reactions are included for modeling purposes without any of the 
aforementioned evidence. In some cases, a confidence score of zero is also 
employed, which highlights reactions that have not yet been evaluated for 
supporting evidence. 

h. Finally, different information should be collected in this stage of the reconstruction 
process to facilitate the following stages. This information includes the biomass 
precursors, necessary to produce a new cell (target organism) which is ideally 
derived from experimental data (see Thiele and Palsson for a detailed description on 
how to compile this information). Furthermore, information about enzyme reaction 
rates (vmax) should be collected, as many biochemical publications contain this 
information. Information about growth media should be also collected. 

3. Conversion of the manual curated metabolic reconstruction into a mathematical 
model. The reconstruction process is an iterative process as shown in Figure 1, where 
the initial reconstruction is converted into a mathematical format, the so called 
stoichiometric (S) matrix. This model conversion also includes the addition of balances 
and bounds. Balances in biochemical networks can be, for example, mass- and energy 
conservation. For instance, the majority of modeling applications of metabolic models 
assume the system to be in quasi steady state. This assumption implies that the sum of 
producing reactions for a particular metabolite is equal to the sum of consuming 
reactions. Bounds on metabolic reactions can include maximal reaction rates based on 
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the catalyzing enzyme’s properties, thermodynamic information (e.g., reaction 
directionalities), etc. Often, the mathematical models are stored and computed in 
Matlab (Mathwork, Inc). Commonly, metabolic reconstructions and models are stored in 
the systems biology markup-language (SBML) format [14], which is platform 
independent and can be loaded in numerous systems biology applications. 

4. Network debugging and evaluation to ensure that the metabolic model has similar 
phenotypic properties as the target organism. Once the metabolic reconstruction is 
converted into a mathematical format and balances and bounds are applied, a 
comprehensive investigation of the model’s properties begins. Most reconstructions 
contain initially numerous dead-end metabolites (i.e., metabolites that are only 
produced or consumed in the network). Due to the balance constraints, reactions which 
contain such dead-end metabolites cannot carry any reaction flux in any simulation 
conditions. A detailed evaluation of these dead-end metabolites is necessary to identify 
whether these metabolites can be connected to the remaining network by adding one 
or more reactions to the reconstruction. However, one has to be careful, as arbitrary 
filling of the so-called gaps will alter significantly the model’s properties. All added 
reactions should have experimental, genome and/or physiological data as supporting 
evidence. Some dead-end metabolites may remain in the network, as current 
knowledge does not support any filling of gaps they are causing. In addition to these 
‘knowledge gaps’ the reconstruction can contain ‘scope gaps.’ In the case of scope gaps, 
reactions are known, which could connect the dead-end metabolite, but they are either 
non-metabolic or not within a previously defined scope of the reconstruction (e.g., tRNA 
charging with amino acids). 

Once all dead-end metabolites have been characterized and partially connected to the 
network by repeating part of the second and third stage, the model’s capability to 
produce biomass precursor is evaluated. This process will lead to further identification 
of network gaps, which need to be filled. This step can be quite time-consuming, and 
detailed evaluation of dead-end metabolites in the earlier step will directly pay off. 
When the model can produce all biomass precursors, one can compile them into one 
reaction (the biomass reaction) by considering their fractional contributions to cell 
composition. This stage also includes further (i) quality tests, such as the model’s 
capability to grow on known carbon, nitrogen, phosphor and sulfur sources; (ii) the 
capability to reproduce accurately measured growth rates and to secrete known by-
products. The list of tests depends on the properties of the target organism as well as 
the availability of experimental data (e.g., phenotyping data, knock-out mutant growth 
phenotype data, etc.). Note that this stage is iterative, in which network reactions will 
be added (by repeating partially, or in full, stage 2 and 3) or in some cases reactions will 
be removed from the metabolic reconstruction. This stage is deemed to be finished if 
the model reproduces accurately the target organism’s phenotypic characteristics 
and/or experimental data is exhausted. 

5. Prospective use of the reconstruction and the metabolic models. This stage is certainly 
the most exciting part of the reconstruction process. Numerous applications have been 
developed over last decade or so, including biological discovery [15], metabolic 
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engineering [16-17], prediction of outcome of adaptive evolution [18], network topology 
[19], and assessment of phenotypic behavior [20-22]. Some of these applications have 
been summarized in a recent review [23-24]. 

Output 

The output of this workflow is a highly curated, accurate and comprehensive representation of 
biochemical transformation taking place in the organism of interest (Figure 2). Note that to 
date, it is not possible to automate all steps within the 5 stages without loss of accuracy or 
correctness. 
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Workflow 2: Metabolic Flux Analysis via Isotope Labeling 

Summary: Metabolic fluxes are a key determinant of cellular physiology, representing the final 
functional output of the interaction of all the molecular machinery (genes, proteins, 
metabolites) studied by the other “omics” fields. This workflow (a schematic of which is 
presented in Figure 1) describes the input data required for measuring fluxes using an isotope 
labeled feed, along with the expected output and the processes needed to obtain it. The main 
input data are metabolite labeling patterns after a carbon labeling experiment, a metabolic 
reconstruction, and measured extracellular and biomass fluxes. The desired output is the rate 
(i.e., number of molecules through the reaction) for each of the reactions considered in the 
model, along with confidence intervals. Here, we will focus on the most common and well-
established form of flux analysis through isotope labeling: 13C Metabolic Flux Analysis (13C MFA) 
from proteogenic amino acids in the exponential phase. Nonetheless, the modular nature of 
the workflow presented here will allow for other varieties of 13C MFA in development to be 
easily incorporated. 
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Figure 1. Workflow for 
13

C metabolic flux analysis. Blue blocks indicate processes (e.g., experiments or 
algorithms), and the green blocks indicate datasets or physical objects. See text on next page for callout to this 
figure. 

The following workflow for metabolic flux analysis though isotope labeling will focus on its most 
common and established form: 13C Metabolic Flux Analysis (13C MFA) from proteogenic amino 
acids in the exponential phase. This is not to say that it is the most important, but rather the 
most mature and where agreement on a common workflow is most likely. That having been 
said, the modular nature of the workflow presented here allows for other varieties to be easily 
incorporated, some of which are still in development. For example, if intracellular metabolite 
labeling were to be used instead of amino acid labeling, this data (and the necessary metabolite 
concentrations) could be easily inserted at the same point in the diagram as amino acid labeling 
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(along with a connection to the metabolomics workflow). Other such variations such as flux 
analysis in a non-steady state [1], labeling of atoms other than carbon [2], or usage of NMR 
data [3] can be added in a similar fashion. 

The workflow described here is an important tool for us as researchers for several reasons: 1) it 
explains the process to new members of the group as well as collaborators, 2) it helps define 
the standards for stored data in order to replicate and compare results in the future 3) it 
defines the steps used to track project completion and to help plan and develop high-
throughput experiments. 

The first step we include in the workflow is the characterization of the strain growth, a process 
not exclusive to 13C MFA. This characterization produces two sets of data that will be useful for 
planning the isotope labeled experiment: the growth curve and the concentration of 
extracellular metabolites. The growth curve provides the mid-log point used for sampling, and 
the extracellular metabolite concentration provides a rough idea of which metabolic pathways 
are important in addition to measured transport fluxes for later use. An example of a possible 
data input of extracellular metabolite concentration is shown in Figure 2. Useful metadata 
involves strain details, including plasmid and genetic modifications, along with materials and 
methods for OD and extracellular metabolite measurements. 
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Figure 2. Example of output of HP-LC analysis used as input of extracellular metabolite concentration. A standard 
format for this information would be useful. 

The main experimental process in the workflow is the performance of the labeling experiment, 
the workflow for which has been described by Zamboni et al [4] (see Figure 3). The necessary 
input for planning and performing the experiment includes the growth curve and extracellular 
metabolite concentrations, which has been discussed above, and the feed labeling, which 
affects the range of fluxes that can reliably be determined  [5] [6]. The output includes the main 
piece of data needed to constrain the metabolic fluxes: the amino acid labeling pattern. The 
labeling information should include as metadata details of the experiment including sampling 
points, initial feed labeling and materials, and methods for labeling measurement. Examples of 
amino acid labeling data in terms of the derivatized fragments [7] or amino acid backbone 
labeling can be seen in Figs. 4 and 5 [8] [9]. 
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Figure 3. Workflow for carbon labeling experiment as per Zamboni et al [3] showing the two types of methods to 
obtain flux profiles: through flux ratio analysis or isotopomer balancing and iterative fitting. 
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Figure 4. Amino acid labeling for different derivatized fragments, taken from [7]. The name on the left column 
corresponds to the amino acid and the fragment type [6]. Each of the following columns corresponds to the 
fraction of molecules with 0,1,2... extra mass units incorporated due to isotopic variation (from carbon or other 
atoms). 
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Figure 5. Amino acid labeling for carbon backbone. M0, M1, M2... indicate the fraction of molecules with 0,1,2.... 
labeled carbons incorporated [8]. 

Extracellular metabolite concentrations from the growth characterization experiment are used 
to derive the transport fluxes, (i.e. uptake and secretion rates). The calculation from 
extracellular metabolites is straightforward, and it involves calculating the change in metabolite 
concentration in the media. Another important set of known fluxes is the fluxes to biomass 
production, obtained from the change in OD and the cell composition. 

Fitting the fluxes to the labeling data is the main computational process in the workflow. A 
variety of methods are available to do this [7] [10] [11]. Some involve determination of local 
flux ratios, and some are based on iterative fittings for the whole metabolic network under 
consideration (see Figure 3). Among the latter, the fit can either be performed in a search space 
involving fluxes and labeling, with the labeling pattern included as a constraint [12], or in a 
search space involving only fluxes, with the labeling determined for each flux profile. Labeling 
corresponding to each flux profile can be produced using several methods, including 
isotopomer mapping matrices [13], cumomers  [14] or elementary metabolic units  [15], to 
name a few. The search through the flux phase space can, as well, be carried over via a variety 
of techniques, including genetic algorithms, sequential quadratic programming and simulated 
annealing  [7]. Software for flux calculations include 13CFLUX [16] [4] and FIATFLUX [17], none 
of which are available in open source format, and openFLUX  [18], a recent application based on 
elementary metabolic units available in open source format. For the purpose of designing a 
workflow, what is important is not the differences among these methods but the fact that they 
all require the same input: 1) transport and biomass fluxes, 2) amino acid labeling, 3) initial feed 
labeling, and 4) the carbon transitions included in a metabolic reconstruction. Amino acid and 
initial labeling patterns, and measured fluxes have all been discussed above. The metabolic 
reconstruction has been discussed at length above; the only required condition is that it 
includes atomic transitions (see example in Figure 6 [19]). This metabolic model may be a 
coarse grained version of the models considered above. See, for example, Figs. 6 and 7, where 
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some reactions have been clumped together to ease calculations. Recently, a new tool for 
sharing, storing, and constructing these atomic transitions embedded in a metabolic 
reconstruction has become available [20]. Standard formats used in this program are the 
13CFLUX format and SBML. 

 

 

Figure 6. Example of atomic transitions input needed form 13C MFA [18]. The first number indicates the reaction 
number as per Figure 7, and the numbers in parenthesis indicate the metabolite numbers. Carbon transitions are 
indicated as strings of letters: e.g., ABC -> AB + C indicates that the first two carbon in the reactant end up as the 
two carbons in the first product and the last carbon goes to the second product. 
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Figure 7. Reaction network for Shewanella central carbon metabolism [18]. Notice how some of the reactions 
(e.g., g6p to Ru5P in the penthose-phosphate pathway) have been clumped together to ease calculations). 

The output should include the flux profile giving the best fit for the experimental data, a 
confidence interval, and the computed labeling patterns. The metabolic flux profile gives the 
best guess (compatible with the data) of the rate for each of the metabolic reactions 
considered in the metabolic model of the cell. This information is useful per se as a widely 
recognized highly relevant characteristic of the phenotype [21], and has numerous applications 
in (e.g.) metabolic engineering [11]. As with every experimental measurement, it is also 
desirable to assign confidence intervals to flux estimates, and a variety of algorithms are 
available for this purpose [7]. 

A simple list of Fluxes with their corresponding confidence intervals for each metabolic reaction 
can be very difficult to make productive use of, particularly for large models. Hence, 
visualization is an important part of the workflow and several possibilities are 
available [22] [23] [24] [25], although not all of them allow flux visualization for models with 
clumped reactions. 
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Finally, a useful visual check that the fit is appropriate is to compare computational predictions 
with experimental data, as shown in Figure 8. 

 

Figure 8. Comparison between computed and measured labeling data [7]. A good fit does not deviate from the 
diagonal. 
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Workflow 3: Inference of Gene Regulatory Networks 

Summary 

Gene regulatory networks (GRNs) are the “on-off” switches and rheostats of cells that operate 
at the gene level. They dynamically orchestrate the level of expression for each gene in the 
genome by controlling whether and how vigorously that gene will be transcribed into mRNA. 
Understanding how GRNs work is key to systems biology and its successful applications. An 
array of input data types exists. Knowledgebase users should be able to select an organism, 
upload, broadcast, or import expression data from public repositories, and submit a request for 
gene regulatory network inference. Meta-information on experiment design should be 
automatically parsed from public data, or the user should be prompted to upload this 
information. Users may want to start with a set of genes or a metabolic process and ask which 
factors are its regulators. Another use scenario is that researchers may want to know the gene 
targets of regulatory elements. 

Genes will be grouped into putative regulatory modules whose transcription is correlated under 
specific conditions. For each module, the user selects a subset of known transcription factors 
and environmental factors that best predict the transcription levels. Additional inputs, such as 
motifs or protein interactions, may be statistically integrated in the clustering step or the 
network inference step, and shared regulatory motifs can be computed. Several algorithms 
have been devised for clustering and discovery of regulatory influences. Results can be 
exported as raw data or presented to the user in a searchable and browsable form. 
Subnetworks can be graphically displayed along with views of expression profiles and 
regulatory motifs and the gene content of individual clusters. Useful output will also include the 
ability to compute and present predictions (and confidence estimates on predictions) of effect 
of transcription factor deletions/overexpressions and/or environmental changes. 

Inputs 
1. Depending on the specific type of network inference analysis a user has in mind, a 

different combination of the following data might be necessary; but minimally, these 
seven types of information cover most of what is available today. 

2. Measurements of transcription (with confidence values [if avail.]) in the form of an n x 
m matrix with n genes and m conditions (microarray or sequencing) 

3. Measurements of fitness associated with systematic gene knockouts or over-expression 
(maybe these last two can be condensed in measures of genome-scale gene function 
with confidence in the form of an n x m matrix.... This could be generalized as 
phenotype and also have associated confidence depending on how it’s measured. 

4. Gene interaction network(s) = [nodes (genes), edges (interactions/type), confidence 
values or weights for edges] 

5. Gene locations on genome—with RNA-Seq this is becoming extremely precise with 
direct measurement. 

6. Genome sequence or individual upstream sequences (for motif detection) 
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7. A list of predictors (transcription factors, environmental factors including metabolites) 

8. Machine-readable descriptions of conditions, specifically time series info with 
standardized measurements of environmental factors 

User will specify an organism and import (or broadcast) the above data items. Many of these 
data types are stored in existing databases and can be loaded automatically through 
interoperability with these data sources. Many of these data types (items 2-4) can be obtained 
automatically given the organism. Item 1 may be obtained automatically from expression 
databases such as GEO or MicrobesOnline. Item 3 can be obtained from STRING, and some 
information is also accessible in MicrobesOnline. Items 4-6 can be obtained from NCBI or 
MicrobesOnline or other databases. 

However, these data are not available for all organisms. One addendum to this work is that 
many of these types of measurements follow a standard experimental workflow. Once a 
genome of a cultivated organism gets sequenced, it might be useful to develop a minimal set of 
functional measurements to aid in this. 

As these workflows are being developed and have increasingly precise data such as RNA-Seq 
and can have associated confidence measures that can be carried through the analyses, this is 
providing a basis for comparing the precision of results between methods and laboratories that 
would help to improve quality and would benefit existing systems such as GEO if applied 
consistently. 

Apply clustering and network inference 
Group the genes into putative regulatory modules whose transcription is correlated over a set 
of conditions. Select a subset of known transcription factors and environmental factors that 
best predict the transcription levels of each module. Additional inputs, such as motifs or protein 
interactions, may be statistically integrated in the clustering step or the network inference step, 
and shared regulatory motifs can be computed. Several algorithms have been devised for 
clustering and discovery of regulatory influences; some are available in R and MatLab. 

Outputs 
 Clusters of putatively coregulated genes or biclusters containing genes putatively 

coregulated under subsets of conditions 

 Cis-regulatory motifs 

 Regulatory network mapping: influences of predictors on genes within 
clusters/biclusters directly or through and and or operations. Confidence values for 
edges. 

Results can be exported as raw data or presented to the user in a searchable and browsable 
form. Users may want to start with a set of genes or a metabolic process and ask which factors 
are its regulators. Or, users may want to take a given regulator and ask what are its targets. 
Subnetworks can be graphically displayed along with graphical views of expression profiles and 
regulatory motifs and the gene content of individual clusters. Useful output will also include the 
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ability to compute and present predictions (and confidence estimates on predictions) of effect 
of TF deletions/overexpressions and/or environmental changes. 

Scope 
A user should be able to select an organism, upload, broadcast, or import expression data from 
public repositories, and submit a request for network inference; metainformation on 
experiment design should be automatically parsed from public data, or a user should be 
prompted to upload this information. All other data types can be automatically parsed from 
public repositories—an advanced user should have privileges to change or override default 
settings by changing source of information, threshold of significance, etc. A user should be 
given options for choice of algorithms based on the amount and type of available data; the user 
should have access to published citations for the algorithms and basic information on workings 
of the algorithm in non-technical jargon-free language. It should be possible to store a session 
with the default or user-edited settings so the entire analysis can be recreated. 

Data requirements and computational complexity 

It seems that these might be important numbers both from the user’s perspective and from the 
planning perspective, but can these be coherently calculated? We can give some perspectives 
to the user, for instance, to infer a network with causal influences time series data are a must; 
for better coverage of regulons one needs to probe responses to at least half a dozen or a 
dozen environmental perturbations with different dosages and over the time scale of the 
response; to incorporate mechanisms we need to have physical interactions (P-D, P-P), or 
information on TF-cis-regulatory motif relationships. However, in principle, one could learn a 
network based on correlations and cis-regulatory motifs with a relatively small dataset (30-50 
experiments - see Gardner's CLR algorithm or Bar-Joseph's DREM). Such a network will give a 
very limited view of transcriptional control but could be deemed extremely valuable for an 
organism for which absolutely nothing was known previously. Given the diverse variations in 
use cases, while we could consider very simple to very sophisticated cases, I would argue that 
we should focus on use-cases of simple to mid-scale complexity. I say this because advanced 
users with sophisticated needs are likely to have the capability to do it themselves (without a 
knowledgebase). 

We could have minimal requirements imposed on algorithm developers when they submit their 
work. This would include a listing of requirements (number of experiments, interaction data 
etc.). It might be instructive to have the following information as well; I am not sure if we can 
generalize this to other use cases. 

 Estimates of number and diversity of experiments necessary for clustering 

 Estimates of quality needed—issues of quality, compendium biases, etc. 

 Estimates of computational complexity of biclustering/bayes nets/etc. 

  

A
ppendix D

 
 W

orkshop R
eports 



Appendix D 
DOE Genomic Science Microbial Systems Biology Knowledgebase Workshop, Feb. 9–10, 2010 

300 
DOE Systems Biology Knowledgebase Implementation Plan • September 2010 

Notes 

Are there other players we'd like to incorporate, like RNA regulatory elements, for instance? 
Would we want to get more out? Network motifs? How about Lee's fusion of kinetics and 
GRNs? Does that require additional input or generate additional output? 

Certainly, moving beyond the inference of regulatory structure and gross dynamics would 
require different experiments. Inferring metabolism requires both different sorts of functional 
assays and genome-scale experiments; inferring signaling pathways has its own troubles (see 
Aindrila Mukhopadhyay's document); inferring complex regulation like that implemented in 
control of sporulation requires more detailed microscopic measurement and mechanistic 
modeling. However, here we have the opportunity for something that could almost become a 
standard after analysis of any sequenced genome. 

Inference and Measurement 

Is it possible to describe the situations where it is better to try to infer genetic regulatory 
network topology, rather than try to measure the regulatory interactions directly? There have 
been remarkable experimental strides made in determining the sequences to which 
transcription factors bind (e.g., Hesselberth et al, “Global mapping of protein-DNA interactions 
in vivo by digital genomic footprinting,” Nature Methods 6, 283 - 289 (2009) 
doi:10.1038/nmeth.1313). 
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Workflow 4: Signaling 

Summary 

Due to the focus on microbes and microbial communities, the workflow pertains to signaling in 
bacteria. Bacterial signaling forms a subset of the Genetic Regulatory Network discussion (see 
Workflow 3) and therefore contains overlap in experimental design, analysis and workflow. 

Microbial genomes present signaling systems to sense and respond to both external and 
internal stimuli1,2. Signals include numerous factors considered to be stresses, intracellular 
cues, and environmental changes. In bacteria, two component signal transduction systems, 
typically comprised of a sensor histidine kinase and a response regulator, provide the primary 
mechanism of signal sensing and response3,4. Signal transduction occurs via phosphotransfer or 
phophorelay and results in an activated response regulator. The best-studied response 
mechanisms include either the direct modulation of chemotaxis by the activated response 
regulator, or in a large number of studies, response regulator modulated differential expression 
of target genes. New classes of response regulators that modulate function via alternate 
mechanisms such as c-diGMP cyclase or phosphodiesterase domains have also been 
described1,2. Available sequenced genomes from environmental organisms encode numerous 
sensor and response regulator proteins containing domains of unknown function indicating that 
additional mechanisms for effector function have yet to be discovered. Environmental bacteria 
such as Geobacter metallireducens, Desulfovibrio vulgaris, and the cyanobactrium Nostoc spp. 
have upward of 60, to more than 150, sensor kinases5. The responses regulated by the 
corresponding two component systems are no doubt at the core of environmental process of 
key significance. These systems also provide the parts for developing valuable sensory modules 
to build sophisticated engineered systems (using synthetic biology methods). 

Definition of a signal: With regard to the type of research being conducted by the Genomic 
Science groups, signals can vary widely. In environmentally relevant microbes, a signal could be 
a change in environmental cue (e.g., the lack/abundance of resources such as carbon source, 
electron acceptors, electron donors, amino acids, vitamins, etc.); stresses (e.g., salt, pH, heat, 
cold, metals, toxins, oxygen, a variety of small molecules); or variability in other organisms in 
the microenvironment. The responses to these signals, including the triggering of altered 
physiological states (e.g., biofilm formation, sporulation, virulence, swarming, etc.) are all 
initiated via signal sensing and corresponding response. In microbes that are being engineered 
for industrial uses (e.g., biofuel production), perturbation from toxins present in carbon feed, 
intracellular triggers due to imbalance in metabolic intermediates, and accumulation of final 
(often toxic) products serve as signals. 

A vast body of knowledge exists for these systems from individually studied systems. Efforts to 
compile and integrate information on regulatory modules from such studies have only recently 
begun to emerge as described in Workflow 3. However, the impact of multiple stimuli on a 
given organism or comprehensive understanding of all signal sensing for a single organism is 
still rare. In the few cases where such studies have been undertaken, valuable and interesting 
phenomenon have been discovered6,7. The tremendous increase in sequenced organisms and 
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corresponding computational2,5,8 and experimental tools9,10 now makes it more possible to 
undertake such efforts. 

Metadata: This documents what signals are being studied, under what defined conditions, on 
which organisms and by whom? What media and growth phases are being used? What 
methods are being used (sequencing, arrays, analytical)? What analysis tools, in silico prediction 
algorithms, and validation experiments are to be used? 

Aspects of studying signaling 
 What are the genomes in question? For a given organism, there may be more than one 

genome sequence if there are modified, engineered, evolved, adapted or shuffled 
versions. 

 Sensing and responding to signals: Study of two-component, cAMP, and c-diGMP 
systems, transcriptional factors, global regulators, sigma factors; cell-wide studies 
(transcriptomics, proteomics, and metabolomic studies), and mapping ligand (signal) 
binding, phospho-transfer, and other post-translation modification. 

 Information gathered: Ligand binding and transport, two component phosphorylation, 
other assays (chemotaxis, binding to cyclic-diGMP, DNA gel shifts), ChIP-chip arrays, 
ChIP-seq, microrrays, RNA-Seq, mapping post translational modifications 
(phosphoproteome, methylations etc), mapping protein interactions and localization. 

Data types 
This will form the core of the database for this topic 

 Genome sequences 

 Knockout and expression libraries: corresponding phenotypic data (e.g. from omniglogs 
or other such HT strategies) 

 Transcript level data: microarray, RNA-Seq, absolute mRNA quants (e.g. nCOUNTER) 

 DNA binding: ChIP-chip, ChIP-seq, microfluidics 

 Mass Spec data: Protein levels, Post translational modifications, metabolites 

 (data from different types of mass spectrometers) 

 Ligand binding mapping: Semi HT 

 Regulator-DNA binding: Semi HT 

 Regulatory motifs and maps generated using computational methods 

Resources 
 Common sensory proteins include histidine kinases, methyl-accepting chemotaxis 

receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-
GMP phosphodiesterases. A webpage maintained Galperin and coworkers contains a 
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fairly comprehensive repository of signal transduction systems from over 500 bacteria 
and archaea11. 

 Predictive tools and databases (e.g. Regtransbase 12, MicrobesOnline13, and MiST16). 

 Specific tools for predicting cognate partners of sensor histidine kinases and response 
regulators such as that developed by Burger and van Nimwegen8. 

 Methods developed for mapping two component phosphotransfer and relay9, rewiring 
sensor kinases14. 

 Classification system developed for categorizing bacterial signaling proteins1,2,15. 

Illustration using one concrete problem 
BESC is studying a number of Caldicellulosirupter species, which are non-sporulating, anaerobic,  
gram positive, thermophilic bacteria that can facilitate the direct conversion of cellulosic 
biomass (e.g. from switchgrass) to ethanol, H2 and other products. 

A study of this organism will utilize the features afforded by other knowledgebases: Annotated 
genomes and their use in generating arrays, predictions for regulatory networks and motifs, 
predicted two component systems, transcriptional factors (including those that work with 
transporters), sigma factors, small RNA regulators. 

A given experiment would entail growth of Caldicellulosirupter on ground plant material and 
monitor production of waste products including ethanol, H2, acetate etc. Genetic engineering 
could create the production of alternative end products in different proportions. 

A range of factors (signals) would be examined in this context. Beneficial factors include C 
source, cell density, etc. Harmful factors include exposure to O2, cold shock, inhibitors from 
lignocellulosic biomass, acetate, non-optimal pH, salt, and the accumulation of other final 
products. 

Current studies include: Log phase growth using cellobiose and switchgrass (pretreated), 
stationary phase growth in switchgrass (pretreated), log phase growth under ethanol stress 
with either cellobiose or switchgrass. 

A systematic examination of any of the above factors could be conducted using the following: 

1. Transcript level measurements: arrays, RNA-Seq, other targeted measurements. 

2. ChIP-chip, ChIP-seq 

3. Analytical assays: 

a. HT: Mass spec based analysis (protein levels, protein complexes, PTMs) 

b. MT: ligand-docking, transport, 

c. LT: Mapping HK-RR phosphotransfer, RR-DNA gel shifs 

d. LLT: Imaging for morphological changes or cellular localization of complexes. 

4. Study of knockout or expression strain libraries (transposon, targeted, site specific). 
Corresponding phenotypic data and iterative (1), (2) and (3) 
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5. Collecting and integrating the above data types into previous or initial regulatory 
network prediction (see Workflow 3: Inference of Gene Regulatory Networks). 

HT: High throughput; MT: Medium throughput; LT: Low throughput; LLT: Low Low throughput; 
PMT: Post translational modifications. 
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Workflow 5: Structural Biology 

Summary 

The nucleic acid sequence of a protein gene encodes an amino acid sequence that typically 
folds to generate a specific three-dimensional shape. This structure is often vital for the 
protein’s function. In enzymes, the structure serves to keep key catalytic residues in a unique 
geometry, poised to act on substrate molecules. As such, the relationship between primary 
sequence and tertiary shape is central to our understanding of molecular biology. There is a 
wealth of information that is ripe for analysis in the context of the Knowledgebase. For 
example: the relationship between sequence and fold (for proteins and nucleic acids), the 
assembly of single molecules to form larger complexes, and the evolutionary relationships 
within and between protein families. Rapid progress can be made in providing functionality to 
researchers via the Knowledgebase. Initial workflows can focus on visualizing the linkage 
between sequence and structure (see first and second workflows below) and dissection and 
visualization of cellular compartments (see third workflow below). These will provide users with 
powerful tools to probe sequence/structure relationships, which otherwise are limited to 
experts. 

Three structural biology workflows were submitted: 

1. Locating and visualizing an enzyme active site 

a. Goal: Assign, then visualize the amino acid residues in a protein sequence involved 
in enzymatic activity 

2. Determine and visualize the oligomeric state of molecular complexes 

a. Goal: Determine and then visualize the oligomeric state of a protein complex 

3. Locating and visualizing a cellular compartment 

a. Goal: Locate (segment) and visualize one or more cellular compartments in a microbe. 

For each research goal, the Inputs, Analysis process, Outputs, Tools, and Knowledgebase 
context were provided. 

1. Locating and visualizing an enzyme active site 
Goal: To assign and then visualize the amino acid residues in a protein sequence involved in 
enzymatic activity. 

Inputs 

- Sequence of a protein 

- High resolution protein structure (from X-ray crystallography or NMR) or high fidelity 
homology model 

- One or more related sequences/structures with known active site residues 
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Process 

- Perform alignment (most likely using multiple proteins) of sequence with unknown 
active site residues (may also include multiple family members) against known residues 

- In cases of high sequence similarity, the active site residues in the unknown can be 
identified by sequence conservation 

- In cases of remote similarity, more complex models (e.g. hidden Markov, sequence 
motifs, combined sequence/structure alignment) may need to be generated to infer the 
likely equivalent residues in the unknown 

- Predictions of active site residues can be validated against any prior biochemical data 
and/or phyologenetic information 

Outputs 

- Protein sequence with active site residues highlighted 

- Visual representation in standard molecular viewing software with active site residues 
highlighted 

Tools required 

- Parsing protein structure and sequence 

- Single and multiple sequence alignment 

- Combined sequence/structure alignment 

- Sequence display 

- 3D structure display 

Knowledgebase context 

- Provides linkage to and automatic retrieval of related structures in the Protein Data 
Bank 

- Performs complex sequence and sequence/structure analysis without detailed user 
learning 

- Cross validates against other experimental data within the Knowledgebase and in other 
outside resources 

- Displays results in easy to understand visual forms and for download and subsequent 
analysis 
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2. Determining and visualizing the oligomeric state of molecular complex 
Goal: To determine and then visualize the oligomeric state of a protein complex. 

Inputs 

- Sequence of a protein 

- One or more related sequences/structures with known oligomeric state 

- Optionally experimental data to define oligomeric state, such as small angle X-ray 
scattering (SAXS) 

- Optionally high resolution protein structure (from X-ray crystallography or NMR) or 
homology model 

Process 

- Perform alignment (most likely using multiple proteins) of sequence with unknown 
oligomeric state (may also include multiple family members) against sequences of 
known state 

- In cases of high sequence similarity, the likely oligomeric state can be identified from 
the nearest similar sequence 

- In cases of remote similarity, more complex models (e.g. combined sequence/structure 
alignment) may need to be used to determine if structural features involved in 
oligomerization interfaces are likely to be conserved 

- Predictions of oligomeric state can be validated against any prior experimental data (e.g. 
SAXS), biochemical data and/or phyologenetic information 

Outputs 

- Three-dimensional model of oligomer 

- Protein sequence with residues involved in oligomerization highlighted 

- Visual representation in standard molecular viewing software with interface residues 
highlighted 

Tools required 

- Parsing protein structure and sequence 

- Single and multiple sequence alignment 

- Combined sequence/structure alignment 

- SAXS data analysis 

o Calculation of standard distributions 

o Comparison of distributions to those calculated from 3D models 

o Searching of known structures for similar SAXS curves 
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- Protein structure writing 

- Sequence display 

- 3D structure display 

Knowledgebase context 

- Provides linkage to and automatic retrieval of related structures in the Protein Data 
Bank 

- Performs complex sequence and sequence/structure analysis without detailed user 
learning 

- Cross validates against other experimental data within the Knowledgebase and in other 
outside resources 

- Displays results in easy to understand visual forms and for download and subsequent 
analysis 

3. Locating and visualizing a cellular compartment 
Goal: To locate (segment) and visualize one or more cellular compartments (e.g. mitochondria) 

in a microbe. 

Inputs 

- Three-dimensional reconstruction of one of microbes of interest (e.g. from EM-
tomography or soft X-ray tomography) 

- Characteristics describing the compartment of interest (e.g. shape, density, proximity to 
other features), or a human-generated training set 

- Optionally a visual label indentifying the compartment of interest 

Process 

- Read 3D data 

- Perform pattern matching analysis to identify likely compartments on the basis of input 
data 

- Segment volume data to assign the identity of compartments (note that for some data, 
it is possible to a priori segment on the basis of density, but the problem of identifying 
compartments still remains) 

- Calculate statistics (e.g. volume of cell occupied by compartment, standard deviations 
between samples) 

- Cross validate against any other relevant biochemical data 
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Outputs 

- Statistics of compartments segmented 

- Visual representation in volume rendering viewing software with compartments 
highlighted 

Tools required 

- Parsing large 3D volume datasets 

- Pattern matching algorithms to identify compartments 

- 3D volumetric data display 

Knowledgebase context 

- Performs segmentation analysis without detailed user learning 

- Cross validates against other experimental data within the Knowledgebase and in other 
outside resources 

- Displays results in easy to understand visual forms and for download and subsequent 
analysis 
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Figure 1. A typical workflow for image-based applications 
represents potential layers for image-based registration, 
quantitative analysis, and bioinformatics representation. 
Integration with omic data should take place through an 
ontology layer that provides a common set of vocabulary and 
ontology for exchanging bioinformatics views and their 
corresponding quantitative results. 

 

Workflow 6: Imaging Bioinformatics 

Summary 

One of the major advantages of phenotypic characterization through microscopy is the ability 
to visualize cellular organization, 
morphology and ultrastructure, and 
localization. More importantly, 
microscopic imaging allows cell-by-
cell measurements, revealing a 
cellular heterogeneity that is often 
lost when using OMIC data only. For 
example, Desulfovibrio vulgaris (Dv) 
is known to form micro-colonies at 
certain stages of development due 
to cell-cell communication, a 
complex mechanism that remains 
largely unknown. Such population 
phenotypes can then be 
interrogated at multiple scales 
through multiplexed imaging probes 
to identify changes in structure, 
morphology, and localization on a 
cell-by-cell basis. These 
morphometric features can then be 
linked to omic data to query 
molecular predictors of a specific 
phenotypic subset. The main 
challenge in managing image-based 
data is identifying a quantitative view for each assay, which can be integrated with omic data. 
These quantitative views are often represented as vectors and relationships between vectors. 
Figure 1 is an example of a typical workflow in Imaging Bioinformatics. 

Input Data 

The input data consists of four types of information: (i) experimental design variables, 
(ii) imaging system parameters, (iii) raw image files, and (iv) queries used to target specific 
endpoints. (i) Experimental design refers to the model system, stress conditions, harvest time, 
imaging assay (e.g., labeling), etc. The main challenge has been reducing the number of user 
interactions needed to specify experimental design variables, since one rarely enters metadata 
at the granularity level that is often needed. There are no standards for capturing experimental 
variables; however, the microarray community has defined a complete protocol that can be 
leveraged. (ii) Most modern microscopes capture instrument setup information (e.g., optical 
path, illumination source) and store it as a header (e.g., in the form of a TIFF header) with raw 
data. Nevertheless, the Open Microscopy Environment (OME) has defined a schema for 
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specifying instrument configurations, and some vendors plan to support the proposed schema. 
(iii) Raw data are usually stored in a binary form, and the format varies between different 
vendors. However, LOCI and OME developed a transformer that can read any image format, 
parse it, and store it in a five-dimensional format. The end result is a homogenized 
representation of a diverse file format. (iv) The endpoints or biological queries have to provide 
a series of templates for guiding quantitative analyses. One can design a taxonomy that allows 
users to select from multiple templates. 

Quantitative Analysis 

Analytical requirements for image-based data are quite heterogeneous, and any computational 
pipeline must be extensible for new application software programs. However, common 
computational modules can be defined, integrated, and enhanced for a specific application. 
Nevertheless, there has to be a balance between excessive generalization versus specificity, as 
too much generalization adds to the complexity of a system and thus increases the learning 
curve required to use it efficiently. In general, image-based data analysis needs to incorporate a 
model to recover objects of interest in a robust fashion. Such a model can be expressed either 
geometrically or statistically. In some cases, model-free methods can be used, at a low level, to 
aggregate rich tokens for higher-level analysis. Once the images have been quantified, 
information can be composed and aggregated to form bioinformatics views (see “Output Data” 
below for more information). With respect to image analysis, the ITK image library provides a 
rich set of software and an extensible framework for adding new applications. However, it 
requires expertise in advanced software engineering, which may not be readily available at 
every institution. 

Output Data 

One of the characteristics of image-based assays is that a large number of data are often 
transformed into a very small amount of data. This is referred to as “bioinformatics views,” 
which are often constructed by downloading computed information, and then processed 
further by using one of many statistical or data analysis stand-alone software packages. 
However, it is possible to integrate some basic capabilities into the bioinformatics platform. 
Examples include a dose-response curve, a growth curve, and co-localization frequencies. One 
of the advantages of imaging is that it maps cellular localization (or co-localization), chemical 
composition, and morphometric properties. 

Current State of the Art 

BioSig (ribo.lbl.gov:8080/biosig/home.do) is an example of an imaging bioinformatics system, 
which is being used for mammalian systems. BioSig builds on OME for image harmonization, 
leverages MIAMI (www.mged.org) standards for specifying experimental design variables, and 
has defined a number of tagged templates for assay-specific quantitative analysis. It also 
supports a schema for multidimensional profiling of cell-based assays for high-content 
screening, as shown in Figure 2. 
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The Next Generation 

Current imaging bioinformatics platforms lack (i) an ontology and controlled vocabulary for 
microorganisms of interest to DOE, (ii) an integrated pipeline for bioinformatics and image 
analysis, (iii) an interface for integrating omic data, and (iv) the necessary analysis tools for 
mapping at multiple scales of different imaging modalities. The latter is quite important since it 
enables chemical mapping (e.g., Raman microscopy), localization mapping (e.g., electron or 
optical microscopy), and mass spectrometry imaging (e.g., MALDI imaging). Furthermore, 
having created these maps at multiple scales, one is also interested in correlative analysis 
between these imaging modalities for the model systems of interest under specific 
environment conditions. A potential correlative query would be how the chemical composition 
of the plant cell wall, visualized and quantified with Raman, is altered as a result of increase in 
biomass that is imaged with electron microscopy. In short, the next generation of 
breakthroughs in quantitative image analysis and imaging bioinformatics resides at the 
interface of different imaging modalities, and their integration with omic data. 

 

  

(a) (b) 

Figure 2. Imaging bioinformatics views. (a) Thumbnail visualization enables comparison of biological replicates 
(columns) for each set of experimental variables (rows). Each thumbnail is a hyperlink to a full- resolution version, 
where quantitative results can be overlaid on top of it. (b) Images in (a) are processed, and each cell is represented 
by multidimensional features. The user can select a subset of computed features, put them in a particular order, 
and view them through a heatmap. As a result, multiple phenotypic representations can be viewed simultaneously 
and compared in the context of experimental variables. 
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Section III: Strawman Knowledgebase Architecture 

The preliminary diagram below was developed as a result of discussions held in conjunction 
with this workshop. Though this schematic will be refined in upcoming discussions, it is included 
in this report to indicate how the workflows (research protocols) relate to the ultimate system 
architecture. The workflows being developed by experimentalists to satisfy scientific objectives 
are critical to the development of many Knowledgebase architecture layers, such as data 
repositories (red), computing workflow management, and output visualization design. 

The workflows provide information on data sources and types that must be accommodated by 
the Knowledgebase architecture. In-depth discussions will result in refinement of the workflows 
by the research and computing communities. 
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Fig. 3.1. Example Schematic of Knowledgebase Architectural Components. 
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Data 

The data layer represented in the bottom of Fig. 2 illustrates several data components that will 
be important to achieving the goals of the Knowledgebase project. These data components will 
utilize several technologies. Relational database technology such as Oracle or MySQL will be 
used to manage data that is well structured and suited to relational technologies. Examples 
include the storage of account information, user configurations, and certain data and tool-
related metadata. More recently developed technologies for representing data, such as 
Semantic Web, will be used for biological data with complex data model characteristics. 

An important component of the data layer is data available from other sites that are remotely 
accessed and used singularly or in a federated manner. Federating external data sources will 
make heavy use of web services technologies. Web services are newer technologies allowing 
interoperability between software systems located at distinct sites. Federation will allow us to 
leave stable data at remote sites (i.e., NCBI Taxonomy) when a façade (wrapper, adaptor, 
bridge, etc.) can be constructed around the access routines provided by the remote site. The 
façade will serve to standardize access to data provided by multiple, distinct remote data 
sources. 

Experimental data derived from DOE-funded work that is not available in other data sources in 
a suitable format will be structured and shared appropriately as part of the data layer. This data 
generally is thought of as the results of experiments funded by DOE. The data should not be 
limited to DOE-funded work; if others outside DOE wish to contribute, all the better. 

The data layer also will contain data that exists remotely but is aggregated locally. Local 
aggregation can enhance data usefulness by putting the data in a modified format that corrects 
for missing metadata, incompatible formatting, or because internal computation integrates 
additional data. Pathway data, genome data, transcriptome data, and regulatory network data 
all stored in a suitable form for mash-ups are examples of data that likely will be found in the 
data layer component that represents locally aggregated external data. Another example of 
why external data is aggregated locally is because there will be external published data of use 
and specific data derived from DOE-funded work that is not available in the public domain. 
Other examples can be driven simply by the fact that computations such as similarity searching 
require local data sources for performance reasons. 

Computationally derived data should represent another component of the data layer. 
Computations often can produce entirely new datasets rather than just adding value to existing 
ones. These computations may operate on existing datasets but generally produce a new type 
of data. For example, a computation on RNA sequencing–based gene expression data might 
produce a histogram of coverage statistics. This histogram is a new data type linked to the RNA 
sequencing data through descriptive metadata technology. 

Analysis 

The analysis component of the architecture will allow for development of both libraries and 
interfaces that promote the integration of analytical tools into the recognizable 
Knowledgebase. This component also will provide the facilities needed by the community to 
develop new algorithms and applications enabled by Knowledgebase infrastructure and data 
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access layers. Goals of the Knowledgebase project are to build and promote an environment 
where analysis tools are primarily derived from open contributions. 

In direct support of the data layer, semantic-enabled search algorithms will allow metadata—
information about the data stored in the data layer—to be more than just an attached 
publication or protocol list. Metadata is extremely valuable when making new scientific 
discoveries. Representing, integrating, searching, and performing logic on metadata can be 
challenging enough when the object being measured is sequence or crystal structure. Complex 
and conditional data derived from functional measurement of molecules, cells, and 
communities will make this an exceptional challenge. The rapid development of new 
technologies for making such measurements further increases the need to track the key 
information about experimental and analytical protocols for producing data and the processing 
applied to data before it is stored in accessible formats. A key goal for this effort will be 
developing tools that attach such information to data as easily as possible, identify the most 
important pieces of this data for scientific purposes and searching, capture experimental design 
and goals, and allow queries of this information. 

Existing and New Systems and Projects not Developed by the Knowledgebase 

Existing systems such as MicrobesOnline, the collection of IMG systems, the RAST systems, and 
others are expected to continue and benefit from the centralized or virtually centralized 
(federated) data stores and from direct programmatic access to the open methods developed 
as part of the Knowledgebase. We also anticipate that new systems will emerge. 

It is expected that existing system developers can and will create application programming 
interfaces (APIs) to their systems and publish the specifications of those interfaces as part of 
Knowledgebase API specifications. These API specifications are analogous to the Sun Java Docs 
for the Java APIs. These interfaces may be used by other existing system developers or by the 
Knowledgebase development community. 

As new systems emerge, embracing and nurturing them will be important. Guiding such 
projects so that they become important components of the Knowledgebase also will be 
necessary. 

Workflows 
Scientific workflows can help scientists, analysts, and computer programmers create, execute, 
and share experimental and analytical processes. These workflows can be captured as free text 
use cases or more formally represented using workflow languages. Regardless of whether a 
workflow is captured in a structured or unstructured manner, an important part of the 
Knowledgebase system architecture will be a graphical user interface that is available to the 
community so that anyone can access existing workflows and develop new ones. 

User Interactions 
The user experience will primarily take place through what is known as a horizontal web portal. 
These portals deliver an integrated front end to what is commonly thought of as several 
independent websites that allow users to easily search, visualize, and run analytical software on 
Knowledgebase information. Standard browsers, plugins, and web portal technology will 
enhance the user experience when command line or other existing user interfaces are not 
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suitable. This will allow members of the research community to have a customizable entrance 
to the Knowledgebase. 

User interactions can be thought of in two parts—user interfaces and visualization—because 
these two components use markedly different technologies. For an effective Knowledgebase 
user experience, we will need to focus on both the user interfaces and the more challenging 
aspects of scientific data visualization. 

Relying heavily on web technologies such as HTML, Javascript, and their derivatives, user 
interfaces allow a user to navigate the system, configure analysis environments, input data into 
the system, and retrieve results from it. These user interfaces can leverage the latest 
advancements in social networking to provide tools to the community for shared annotation 
and quality assessment and provide forums that easily reference Knowledgebase information. 

Visualization (referred to as scientific visualization in some communities) relies heavily on 
graphics packages. The goal is to present data in a form that is useful for scientific discovery. 
There may be no interaction required when a visual representation of data is generated and 
presented. 

Standards 
Standards will be instrumental in achieving many aspects of the Knowledgebase project. These 
aspects range from scientific to engineering. From a scientific perspective, describing biological 
data and the relationships between data in a standardized way is critical to advancing our 
ability to interpret it. In relation to engineering, standards will enable healthy, continued 
evolution and growth of the system. 

Several objectives will provide efficient and necessary utilization of standards. These objectives 
include embracing community standards when they are adequate, engaging in the community-
development process of a particular standard when there is an existing standard that might be 
considered inadequate in its current form, and helping the community by initiating standards 
development where gaps exist. 

Although standards for describing data and workflows will be critical, other types of standards 
will be important as well. Having community standards for data sharing is just one example of 
what will have to be supported in the Knowledgebase project. Another such example is 
developing standard workflows and benchmarking data that can be used by the community to 
facilitate a higher level of exchange among scientists. 

In support of an open environment, standards for describing analytical tools, software libraries, 
data schemas, and other technical artifacts used to build the Knowledgebase will be essential 
for broad acceptance and use. Software tools and libraries implemented in the Java 

programming language benefit from a Java communityaccepted standard on how to describe 
APIs. Requiring the use of these standards in code libraries will result in a solid documentation 
base that is needed for general acceptance and further use of the library by the community. 
Other programming languages such as Perl have similar standards.
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Section IV: Workshop Summary and Conclusions 

Workshop participants discussed the need for some level of individual research privacy, which 
could be achieved with user accounts. Data and code could be held in private, and analyses 
conducted in a nonpublic environment. The Knowledgebase also will need to allow users to 
track version history and provenance so that new analyses can be usefully compared with 
previous ones. Other important capabilities workshop participants discussed include: 

 Curation not only of data, but also of models and representation of scientific concepts 

 Comparison and analysis of methods and results over time 

 Simulation, including the ability to modify and improve models 

 Predictions based on simulation and analysis to form new hypotheses 

 Comparison of predictions and results to guide experimental design 

Only a few researchers today have comprehensive access to such computational capabilities, 
yet these tools are necessary to conduct research that will lead to important scientific 
innovations in energy and environment. 

Also envisioned for the Knowledgebase are high standards for usability, understandability, 
discovery, and contribution. System design should be intuitive so that researchers can use it 
with minimal training. Knowledgebase components also need to be understandable. Although 
able to use a given software package, many people often do not understand the process by 
which the software derived its results (e.g., BLAST). Understandability implies that there is a 
good foundational basis for knowing that results returned to a user are based on robust 
scientific knowledge or assumptions. If results are not understandable, system features should 
allow the user to drill down to acquire information about how results were obtained. The 
Knowledgebase also should promote an environment of discovery, leading to new rounds of 
experiments or lines of research. Finally, engaging the entire research community in 
Knowledgebase contribution is critical. Any system being used by scientists ultimately should be 
measured on how well it accomplishes these concepts, advances research, and supports the 
scientific method. 

Future Considerations for Workflow Definitions. Here we see a range of styles and level of 
content in the workflows. For the future final report of the Knowledgebase R&D Project, we will 
need to settle on a style. The Structural Biology workflow is very terse when compared with the 
others, but it is also very clear. In developing a standard for future workflows, this should be 
considered. An important question to raise: Do these workflows provide sufficient detail to 
allow requirements to be established that can drive the Knowledgebase Implementation Plan, 
and if not, how much more detail is needed? 
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Appendix 1: Agenda 

DOE Genomic Science Microbial Systems Biology Knowledgebase Workshop 

Crystal City, Virginia 
Tuesday, February 9, and Wednesday, February 10, 2010 

February 9 

2:00 – 2:30 p.m. Robert Cottingham, Oak Ridge National Laboratory 
“Microbial Systems Biology Knowledgebase: Scientific Objectives and  
Current Prospects” 

Focus on examples of scientific objectives, benefits, and outcomes 

2:30 – 3:00 p.m. Discussion 

3:00 – 3:30 p.m. Robert Kelly, North Carolina State University 
“Near-Term Prospects for Functional Microbial Genomics: Moving Beyond the 
Monoculture Paradigm” 

One organism to two organisms, adding complexity 

3:30 – 4:00 p.m. Discussion 

4:00 – 4:30 p.m.  Adam Arkin, Lawrence Berkeley National Laboratory 
“From Pathways to Populations and Back Again: Long-Term Prospects for the 
Microbial Systems Biology Knowledgebase” 

Much larger complexity of systems, data, models, and impacts 

4:30 – 5:00 p.m.  Discussion 

5:30 p.m.  Adjourn 

February 10 

1:00 – 3:00 p.m. Impromptu follow-up session focusing on workflows 
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Acronyms 
ANL Argonne National Laboratory 
DOE U.S. Department of Energy 
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PNNL Pacific Northwest National Laboratory

A
ppendix D

 
 W

orkshop R
eports 




