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Report on the Mathematics Workshop
for the

Genomes to Life Program

Executive Summary

The Mathematics of Genomes
to Life
On March 18 and 19, 2002, a group of math-
ematical, computational, and biological scien-
tists met in Gaithersburg, Maryland, to identify
long-term mathematics research needs in
biological areas represented by the Genomes
to Life (GTL) program under development by
the U.S. Department of Energy. Several speak-
ers gave overviews of different ways in which
applied and computational mathematics are
expected to play an important role in this
program. The remainder of the workshop was
spent in smaller-group discussions on specific
topics, with the goal of designating key areas
of mathematics research that will contribute to
GTL.

The workshop focused on computational
mathematics techniques to identify and char-
acterize the molecular machines of life and
characterize gene regulatory networks and the

functional repertoire of complex microbial
communities in their natural environments
at the molecular level. Effectively model-
ing these complex biological processes will
require substantial developments in many
areas of computational mathematics
involving discrete, continuous, and stochas-
tic processes. This report summarizes
workshop findings in regard to a broad
range of mathematical and computational
topics and techniques that will be expected
to play a role in the long-term research
program envisioned for GTL. These topics
and techniques include the study of hybrid
systems of differential, discrete, and sto-
chastic equations modeling processes with
multiple spatial and temporal scales;
generalized dynamical systems; statistical
modeling; and processes involving noise
and uncertainty, differential geometry and
topology, graph theory, and mesh genera-
tion, among others.
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Report on the
Mathematics Workshop for the

Genomes to Life Program
U.S. Department of Energy

Gaithersburg, Maryland
March 18–19, 2002

The U.S. Department of Energy (DOE) has
the opportunity to bring to bear its unparal-
leled experience, expertise, and unique
resources in computation on the field of
modern biology, thus building the founda-
tion for a new, comprehensive, and pro-
found understanding of complex living
systems through a new program called
Genomes to Life (GTL). DOE's mission
requires an understanding of the role of
microorganisms in climate change and
energy production, the bioremediation of
energy and nuclear materials waste, and the
health risks of low-dose radiation exposure.
Problems of this scale and significance
motivate the creation of a program aimed at
a complete understanding of microbial
systems. This program will build upon the
remarkable successes of the Human Ge-
nome Project, coupled with DOE's strong
foundation in mathematics and computer
science required for large-scale scientific
simulations, to develop a new computa-
tional bioscience program that will enable
breakthrough advances in computational
techniques for solving complex biological
problems and predicting the behavior of
complex biological systems.

DOE’s current responsibility for remediating
1.7 trillion gallons of contaminated groundwa-
ter and 40 million cubic meters of contami-
nated soil demonstrates the significance and
scale of the need for a new computational
biology program. The need for groundwater
remediation is a result of over 50 years of
research, development, and testing of nuclear
materials. Current state-of-the-art “pump-and-
treat” technology is inefficient, only partially
effective, and economically unjustifiable. The
development of effective bioremediation
techniques promises to provide an alternative
approach for groundwater cleanup within
DOE that will be both effective and economi-
cally feasible. Understanding the behavior and
function of the microbes that will play an
essential role in bioremediation will be pos-
sible, however, only through the development
of powerful new computational approaches
for modeling, simulating, and understanding
the molecular machines of life and gene
regulatory networks that govern cell function.
DOE's missions to understand the roles of
microorganisms in climate change and energy
production and the health risks of low-dose
radiation exposure also will require extensive
development of new computational math-
ematics approaches. Combined with the
revolutionary new technologies in experimen-
tal systems biology, computationally based
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biology provides the key to the development
of the new, comprehensive, and profound
understanding of complex living systems that
will be essential for DOE to meet its mission-
driven challenges during the 21st century.

GTL envisions an aggressive computational
and experimental plan for understanding
microbial systems focused around four major
goals:

Goal 1:  Identify and characterize the molecu-
lar machines of life—the multiprotein
complexes that execute cellular functions
and govern cell form.

Goal 2:  Characterize gene regulatory net-
works.

Goal 3:  Characterize the functional reper-
toire of complex microbial communities
in their natural environments at the
molecular level.

Goal 4:  Develop computational methods and
capabilities to advance understanding of
complex biological systems and predict
their behavior.

This workshop represents an early attempt
by DOE to identify the mathematical and
computational technologies that will be
required to support the GTL program. An
extensive list of such techniques was com-
piled, but it should be understood that this is
by no means a comprehensive list and that
future workshops probably will be needed to
fully scope out and understand the complete
range of requisite GTL support technologies.
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On March 18 and 19, 2002, a group of math-
ematical, computational, and biological
scientists met in Gaithersburg, Maryland,
with the purpose of identifying the long-term
mathematics research needs in the biological
areas represented by the GTL program
under development by DOE. Several speak-
ers gave overviews of different areas in which
applied and computational mathematics are
expected to play an important role in this
program. The remainder of the workshop was
spent in smaller-group discussions on specific
topics, with the goal of identifying the key
areas of mathematics research that will
contribute to GTL. In particular, they identi-
fied many of the anticipated mathematical
challenges in GTL in the fields of differential
equations, stochastic methods, combinatorial
methods, statistical analysis, optimization, and
other relevant areas. The agenda of the
workshop and a list of participants are
attached as appendices.

The March 2002 meeting represents the first
time that DOE has taken a close look at the
need for new developments in computational
mathematics in support of systems biology.
While several key areas were identified that
will require substantial new investments in
computational mathematics research, it
should be understood that the topics identi-
fied in the current report do not represent a
comprehensive survey of all the computa-
tional mathematics needs for Genomes to
Life, and it is recommended that future
workshops be organized to study these issues
more thoroughly.

This workshop focused on Goal 4 of the GTL
program, which emphasizes the essential
significance that scientific computation will

play in meeting the objectives of Goals 1
through 3. With this in mind, participants
identified areas of computational mathemat-
ics research that will be essential for develop-
ment of a computational program in support
of Goals 1 through 3. The participants also
focused on the development of several
illustrative examples of representative
biological grand-challenge problems whose
solution would represent significant advances
in our ability to use advanced computational
tools to understand and manipulate complex
microbial systems. One of these examples is
used in this report to illustrate the essential,
broad-reaching role that computational
mathematics will play in realizing the new
systems biology of the 21st century.

Differential Equations
GTL Goals 2 and 3 depend critically on the
development, analysis, and effective numeri-
cal solution of models describing processes
that take place over an enormous range of
both temporal and spatial scales. The models
will involve systems of ordinary and partial
differential equations, which have been the
foundation of successful modeling in a great
many disciplines. It is clear, however, that
ordinary and partial differential equations
alone cannot describe most of the complex
problems arising in Goals 2 and 3. In addition
to the deterministic behavior described by
classical differential equations, effective
models must incorporate stochastic behavior
and uncertain parameters. In particular, we
will need to understand how to solve hybrid
systems of differential equations, discrete
equations, and stochastic equations using
computational approaches. Both the theory
for understanding the long-time behavior of
these highly complex generalized dynamical

The Mathematics of Genomes to Life
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systems and the numerical methods for
actually solving them are still in their infancy.
Furthermore, computational analysis tools
are needed for the development and verifica-
tion of models, including capabilities for
sensitivity analysis, parameter estimation,
automated bifurcation analysis, and model
reduction and verification. In general, these
analysis tools have not been developed for
these hybrid systems of interest in computa-
tional biology.

Stochasticity
Biological systems are inherently stochastic
at many levels. In more traditional computa-
tional simulation areas such as the study of
chemically reacting fluid flows, reactions
result from the random collision of molecules
in the fluid. Since the number of molecules in
the fluid is large, we can average over a large
number of collisions to obtain continuous
rate equations that accurately describe
kinetics. In biological systems, there may be
only a modest number of some of the pro-
teins important to a molecular process, so
approximation of the reactions with a con-
tinuous rate is not appropriate. As with
chemically reacting fluid flows, a characteris-
tic of reactions in biological systems is that
details of the environment in which a reac-
tion occurs can dramatically alter the rate of
reaction.

Noisy Data
Recently developed experimental procedures
in biology can generate a large quantity of
data on a much larger scale than has resulted
from traditional biological experimentation
over the past century. A particular feature
associated with biological data that differen-
tiates it from the experimental data from
other disciplines is that it will be very noisy.

Consequently, new methodologies for dealing
with noise and uncertainty will be central to
the analysis of experimental data.

Complexity
A third inherent feature of biological model-
ing is the complexity of biological systems.
The molecular processes that control meta-
bolic functions in cells involve complex
networks of reactions with feedback and
control loops. Also, there are often complex
relationships among the different processes,
which may operate symbiotically or in com-
petition.

Statistics
GTL Goals 2 and 3 require the linking of
massive amounts of data measured at the
cellular level to a consistent network model
involving all cell components and their
actions and modeled mathematically by a
system of (possibly stochastic) differential
equations. Although large volumes of data
will be available, the data will, in general, be
very noisy. We need to develop statistical
experimental design methodologies aimed at
maximizing the utility of experiments, and
these methodologies need to be incorporated
into the planning phase for experimental
studies. Statistics will be used for developing
methods and theory for using data to select
consistent statistical models and for the
estimation of unknown parameters (with
confidence measures) in the selected model.
In this case, the data consist of genomic DNA
sequence data and phenotypes of the cell
observed under particular environmental
conditions and at a number of time points.
The phenotypes of the cell are in the form of
gene-specific RNA concentrations, protein
concentrations, images of the cell, and the
molecules it contains. Statistics plays an
important role in the validation of these
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biological mathematical models. Statistics can
also contribute more generally to methods
for incrementally building up a model or
selecting between a set of models.

Geometry, Topology, Graph Theory,
Grid Generation
Differential geometry and topology are
relevant in understanding a number of issues
related to molecular machines. Some ex-
amples include the structural conformation
of closed circular DNA, the free energy
associated with supercoiling in closed DNA,
the actions of topoisomerases and
recombinases, nucleosome winding, and the
binding between proteins and DNA. Alge-
braic and differential topologies provide
information about global restraints on a
cellular structure and may pinpoint details on
the mechanical structure. Computational
geometry, geometric topology, and issues of
shape spaces, registration, organization,
geometry, and analysis are useful in under-
standing the trajectory, dynamics, and shape
changes of the molecular machine. There are
also issues of the relationship of the machine
to its living environment that may benefit
from results in variable geometry and sto-
chastic topology. The continuing interaction
of the machine and its environment can lead
to a patterned variation in its geometric and
topological structure.

There are other related areas of relevance to
computational biology. For example, the
embedding invariants for graphs have been
used in studying topoisomers; random knots

are employed in the study of structures of
macromolecules; and the tangle calculus is
used in the study of the DNA enzyme mecha-
nism. Since many of the biological systems
may have complex interior or exterior geom-
etries, new techniques for geometry represen-
tation and grid generation may be needed in
their simulations.

Software Challenges
For biologists to make effective use of the
anticipated mathematical and computational
developments in simulation and computa-
tional analysis, these developments must be
made available in software tools that should
be easy to use. Eventually, problem-solving
environments will be required to make the
software accessible to the wide community of
biologists working in areas related to Goals 1
through 3 of this initiative.

Modes of Research
Realizing GTL's vision of the new field of
systems biology will require substantial
development of new mathematics and com-
putational techniques. Close collaboration
among computational mathematicians and
biologists over a 5- to 10-year time frame will
lead to discoveries of how to apply existing
mathematical techniques to biological prob-
lems. In addition, long-term (more than 10 to
20 years) basic research to develop new
mathematical and computational techniques
will result in new discoveries in computa-
tional biology that we cannot currently
anticipate.
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The success of the GTL program will depend
on the availability and development of a
large variety of mathematical and computa-
tional tools. Many of these tools are common
in a large number of applications. A repre-
sentative application is introduced in this
section to illustrate the mathematics and
computation that are required.

Bioremediation of Radionuclide-
Contaminated Groundwater
For more than 50 years, the United States
created a vast network of more than 113
facilities for research, development, and
testing of nuclear materials. As a result of
these activities, subsurface contamination has
been identified at over 7000 discrete sites
across the DOE complex. With the end of the
Cold War threat, DOE has shifted its empha-
sis to remediation, decommissioning, and
decontamination of the immense volumes of
contaminated groundwater, sediments, and
structures at its sites. DOE is currently
responsible for remediating 1.7 trillion
gallons of contaminated groundwater, an
amount equal to about 4 times the daily U.S.
water consumption; and 40 million cubic
meters of contaminated soil, enough to fill
about 17 professional sports stadiums. Esti-
mates are that more than 60% of DOE
facilities have groundwater contaminated
with metals or radionuclides. The only con-
taminants that appear in groundwater more
often than metal and radionuclide contami-
nants are chlorinated hydrocarbons. More
than 50% of all soil and sediments at DOE
facilities are contaminated with metal and
radionuclides, the contaminants found with
the highest frequency in soil at all DOE
waste sites. Indeed, while virtually all con-

taminants found at industrial sites nationwide
can also be found at DOE sites, many metals
and especially radionuclides are unique to
DOE sites.

Traditional remediation is often inefficient
and expensive. Current technology for
treatment of groundwater contaminated with
metals or radionuclides is “pump and treat,”
followed by disposal or reinjection of treated
water. This process can be costly and ineffi-
cient due to the difficulty of completely
removing contaminated groundwater and the
sorption of contaminants on mineral surfaces.
DOE's Office of Environmental Manage-
ment (EM), which is responsible for the
cleanup, has stated that advances in science
and technology are critical for DOE to
reduce costs and successfully address these
long-term problems.

Bioremediation of metals and radionuclides.
The catalytic potential of microorganisms in
nature is enormous and yet still relatively
untapped for use in environmental cleanup.
Bioremediation is the use of microorganisms
to decrease, eliminate, modify, or contain
hazardous and radioactive wastes to environ-
mentally safe levels. While bioremediation of
organic contaminants involves their transfor-
mation to benign products such as carbon
dioxide, bioremediation of metals and radio-
nuclides involves their removal from the
aqueous phase to reduce risk to humans and
the environment. Microorganisms can di-
rectly transform metals and radionuclides by
changing their oxidation state to a reduced
form that leads to in situ immobilization.
Alternatively, microorganisms can indirectly
immobilize metals and radionuclides through
the reduction of inorganic ions, which can, in
turn, chemically reduce contaminants to less

A Grand Challenge in Computational Biology
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mobile forms. The long-term stability of these
reduced contaminants is as yet unknown.
Other mechanisms whereby microorganisms
can influence mobility include alteration of
pH, oxidation, and complexation.

Shewanella oneidensis and uranium.
S. oneidensis has remarkable versatility in its
ability to use various electron acceptors,
including oxide, nitrate, fumarate, manganese,
iron, and sulfur. This makes the bacterium a
strong candidate to substitute contaminants
such as uranium or technetium. Researchers
are investigating whether Shewanella can add
electrons (reduce) onto uranium (VI), mak-
ing it uranium (IV). U (VI) is soluble in
water, thus contaminating groundwater and
spreading the uranium beyond the original
source. When transformed into U (IV)
(reduced), it is less soluble and more easily
contained.

Uranium is reduced through an oxidation/
reduction reaction that transfers electrons
from electron donors such as organic mate-
rial to electron acceptors such as sulfates, or,
in this case, uranium. Energy is gained in the
process that drives the metabolism of the cell.

Biologists need to know much more about
the molecules that transfer those electrons
and the pathway that contains these mol-
ecules, because little is known about the
mechanisms. Multiple copies of similar
proteins are approximate substitutes for each
other. For example, it is believed that there
are genes for at least seven C-type chromo-
somes in Shewanella. The pathway that
transports the electrons from the electron
donor, such as organic matter, to the electron
acceptor, such as uranium, involves several
individual reactions. Little is known about
how many different pathways are possible
from the genes in the genome and how these
pathways are regulated in response to vary-

ing environmental conditions, such as the
availability of various electron acceptors and
donors.

Goal 1: Machines
The number of cytochromes (electron trans-
fer agents) in microbes can range from a few
to over 200, and the cytochromes from
bacterium to bacterium differ in structure,
localization, and perhaps function. Knowing
more about the geometry and other charac-
teristics of the cytochromes will enable
deeper understanding of how they work and
perhaps answer the following questions:
What affects the specificity and activation of
a cytochrome? Which cytochromes that have
evolved for iron or nitrate can adapt to
uranium or technetium? If we were to engi-
neer a cytochrome for chromium, what
criteria would we use?

Much is unknown regarding the actual
mechanism of transferring electrons from
molecule (usually but not always a protein)
to molecule along the electron transport
pathway. Some proteins are anchored to the
membrane; others are thought to move about
more freely. Because the intermembrane
space (periplasm) is not electrically conduc-
tive, it is thought that the proteins need to be
in close contact with each other for the
electron to be transported. These interactions
among proteins and other molecules, still
largely unknown, are defined as molecular
machines and are an example of the object of
Goal 1.

Goal 2: Gene Regulatory Networks

The redox reaction conducted by Shewanella
is the result of a long chain of reactions that
strip energy off the substrates as electrons
are passed from one molecule to the next. A
mathematical description of that pathway
and other pathways that provide substrates
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or carry away products helps us understand
what affects the reaction we care about
(reducing uranium). Some pertinent ques-
tions include the following: Why does one
species reduce uranium and another not?
Why do electron acceptors sometimes get
used in an order that differs from their chemical
reduction potential? Is there something
about alternative pathways that would help
explain that? How are these electron path-
ways regulated? With the variety of acceptors
and donors, the large number of analogous
proteins such as cytochromes, and so forth,
the combinatorial aspects of understanding
and predicting pathways multiplies rapidly.

Goal 3: Microbe Communities
Shewanella will compete against other dis-
similar metal-reducing bacteria (DMRB) in
the community of microbes that live in the

contaminated zone (the substrates are used
for energy supply rather than absorbed into
the biomass). We will need to decide whether
some species of DMRB, such as Shewanella,
are preferable for our purposes to others,
such as Geobacter or Desulfovibrio. If so, how
do we adjust the environment to favor the
bacteria we prefer? How do we find out
which organisms are present and what genes
they have without the ability to culture more
than about 1%? What other species are
needed for the metabolism of the community
to be adjusted so that we maximize the
reduction of uranium? For example, can we
alter the environment so that other species
reduce the nitrate if present, allowing
Shewanella to use the uranium as the primary
acceptor (otherwise it might use the nitrate)?
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Discovering the existence and understanding
the structure and function of molecular
machines are among the first but crucial steps
towards the prediction of the behavior of
complex biological systems. The identification
and characterization of molecular machines
require the use of a wide range of mathemati-
cal techniques, such as geometry, topology,
and statistics. Geometry and topology are
useful in studying the shapes and structures
of DNA molecules and their interactions
with protein molecules. Statistics is applicable
in the handling of noise, uncertainties, and
design of experiments.

Understanding the geometric and topological
properties of DNA. The geometric and
topological properties of DNA molecules are
critical aspects of their function. Protein-
ligand binding, protein docking, protein
modulation of DNA expression, altering the
function of DNAs, and many other aspects of
protein function depend on precise geometric
alignment and topological arrangements.
Computational geometry and topology are
expected to be useful in understanding and
modeling such phenomena. Carefully con-
trolling the local shape (geometry) of the
DNA double helix is crucial for cellular
metabolism. Some proteins bind to DNA,
bending it to make distal sites on the DNA
spatially juxtapose, thereby facilitating
binding of other enzymes that require a pair
of sites on which to operate. Other proteins
must disassemble the double helix in a gene
to facilitate expression of that gene, and,
when finished, the original DNA must be
reassembled. The double helix also must be
taken apart and reassembled to facilitate
DNA repair. Enzymes (such as
topoisomerases and recombinases), which

manipulate the geometry and topology of
cellular DNA, perform many important
cellular processes (including segregation of
daughter chromosomes, gene regulation,
DNA repair, and generation of antibody
diversity). In the topological approach to
enzymology, circular DNA is incubated with
an enzyme, producing an enzyme signature in
the form of DNA knots and links. By observ-
ing the changes in DNA geometry (supercoil-
ing) and topology (knotting and linking) due
to enzyme action, the enzyme binding and
mechanism often can be characterized. Once
the geometry of protein-DNA binding and
topology of the enzyme function (breakage,
rotation and reconnection of DNA strands)
are known, the results of knowledge of the
protein and DNA-protein crystallography
can be productively interpreted. The geomet-
ric and topological information shows where
to look on the protein crystal for the moving
parts of the molecular machine, and this
information can then be used to design drugs
that enhance or inhibit enzyme mechanism.

It is necessary to build analytical models of
protein-DNA binding, as well as computa-
tional models to simulate the interaction of
flexible 3D proteins and highly 1D DNA. To
study some of the cellular functions, math-
ematical models of 3D shape also are needed
to allow local and detailed description of
geometry of protein and DNA surfaces and
the local changes in shape. However, the
geometry of such biological assemblies can
be difficult to describe concisely because of
their complex, curvilinear boundaries. New
geometric modeling techniques could be very
useful. Discretizations of interiors or exteri-
ors of these complex geometries are some-
times necessary for simulations. New

GOAL 1: Computational Mathematics Required for Identifying
and Characterizing the Molecular Machines of Life
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mesh-generation techniques for such prob-
lems are needed. Furthermore, these shape
models should be able to describe and com-
pute large-scale changes in protein conforma-
tion, which molecular machines use to
facilitate their mechanism. Simulation of such
machines will entail stochastic geometry and
topology (i.e., random perturbations of local
geometry and global topology) to determine
any moving parts in the machines.

A particular challenge associated with the
geometry of biomolecules arises from their
flexibility. Useful geometric models and
mesh-generation methods must be able to
handle the significant structural deformations
that are intrinsic to the functioning of many
pathways. For example, protein-ligand binding
often requires the protein to change shape as
the ligand nears the binding site. Unfortu-
nately, these systems are often of large scale
and therefore computationally expensive.
Methods for reducing the space of allowable
deformations would have a big impact on the
ability to simulate systems for long periods of
time. Techniques that exploit the structure of
these systems to identify the presumably
small number of interesting degrees of
freedom would be of great value. Possible
approaches include computational topology
and ideas from the study of graph rigidity.

Modeling of biomolecules. Understanding
the interactions of large biomolecules re-
quires accurate models of energetics. In
principle, these can be computed precisely via
quantum mechanics, but this is feasible only
for small systems. For large systems, classical
mechanics is generally employed, with
sophisticated potential fields describing the
energetics of atomic interactions. The compu-
tation of low-energy geometries becomes a
nonlinear, global optimization problem in a
high-dimensional space and for which there

are an enormous number of local minimizers.
Improvements in optimization techniques for
such problems will enable larger and more
realistic simulations and also help with the
validation and improvement of the empirical
energetics models.

Combinatoric techniques for predicting
protein structures. Since there are only about
300 known folding motifs in proteins, meth-
ods to predict the tertiary structure of pro-
teins from sequence data have been useful in
assigning function to newly discovered
proteins. Many proteins are built as dimers or
tetramers from similar modules, and the
interaction of these modules determines the
active site responsible for the protein func-
tion. The knowledge of orthologous and
paralogous proteins also can be helpful in
assigning function and identifying the pro-
teins involved in the molecular machines of
life. Current techniques such as threading and
clustering have enjoyed limited success in
understanding the intrinsic structures, but
new techniques from combinatorics and
geometry remain to be discovered and
developed to solve these challenging problems.

Novel experimental technologies for investi-
gating large molecules continue to advance
rapidly. Similar to recently developed genomic
and structural biology techniques, automatable,
rapid, and inexpensive technologies for
protein sequencing are being developed.
Methods to quickly and accurately interpret
these experimental results are essential. As
experimental methodologies evolve, the
analytical tools required to understand and
interpret the results need to be developed as
well. Some examples include isotope-labeled
versions of nuclear magnetic resonance (NMR)
to measure molecular distances and tech-
niques such as MALDI (matrix-assisted laser
dissociation-ionization) and SELDI (surface-
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enhanced laser dissociation and ionization)
time-of-flight mass spectometry techniques
that are being developed to sequence pro-
teins rapidly from complex mixtures.

Combinatorial techniques have already
found applications in these novel experimen-
tal methodologies. For example, interpreta-
tion of NMR data employs matching in
bipartite graphs to assign peaks to residues.
De novo protein sequencing with mass
spectrometry has employed algorithms for
finding most likely paths in associated graphs.
Both types of experimental data benefit from
fast database searches to find similar patterns
in known molecules.

Statistical analysis. In addition to using
topological and graph-theoretic approaches
to reduce the space of all 3D configurations
of proteins to a lower dimensional space,
statistical methods can be considered as well.
One can employ appropriate data transfor-
mations, data-reduction techniques such as
principal component analysis, and clustering
techniques. This type of dimension reduction
will help to model the microorganism at the
cellular level. In particular, the issue of
selecting the true underlying dimension (e.g.,
the number of clusters) is an important
problem. It is also important to establish
relations between the sequence of a protein
and its structure. For example, there are
many more sequences than structures, which
makes it important to determine what se-
quence components are predictive of the
structure. This corresponds to a regression
problem having thousands of features but
also a high-dimensional outcome. Much work
on methodologies needs be done in this area.

In the characterization of multiprotein
complexes, protein sites that are binding
domains for other proteins and the kind of
structures that allow binding to occur need to

be understood. Sequence data, structural
data, and binding information for all pairs of
proteins are determined experimentally. The
statistical problem is to find the motifs of the
proteins and the properties of their 3D struc-
tures predicting the binding event. However,
there is an additional layer of complexity:
both proteins are provided as sequence data
and structure data, while the outcome is the
single indicator of binding of the proteins.
Multivariate prediction/regression models
might need to incorporate this special cou-
pling of covariates in order to allow an
optimal search for the significant features of
the sequence and structures of the motifs.

Biological experiments generating high-
throughput data (e.g., microarray data) are
subject to experimental noise; repetition of
the same experiment will generate a differ-
ent, but probably similar, data set. It is impor-
tant to design experiments that are the most
informative in answering particular questions
of interest. It is also desirable to be able to
determine an optimal number of times an
experiment might need to be repeated for
sufficient confidence in the answer. In other
words, access to sample size formulas is
needed to provide enough power to detect
enough effects of a certain size. In addition,
each analysis needs to provide precision
estimates and reproducibility measures of
findings in the data. Bootstrapping is a
powerful but compute-intensive statistical
approach that can provide such confidence
measures. The method involves repeatedly
simulating data from an empirical approxi-
mation of the true data-generating distribu-
tion. Given the high-dimensional setting in
biological applications, research is needed to
investigate and refine computational infer-
ence procedures such as bootstrapping and
Monte-Carlo cross-validation for testing,
estimation, and reliability assessment.
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GTL Goals 2 and 3 seek to characterize gene
regulatory networks and also the functional
repertoire of complex microbial communities
in their natural environments at the molecu-
lar level. While these two goals pertain to
biology at very different spatial and temporal
scales, the computational mathematics
required to model and understand the rel-
evant processes have many aspects in com-
mon. In particular, the understanding of
stochastic differential equations and the
development of computational methods for
solving them will play a pivotal role in ac-
complishing both goals. For this reason, we
discuss the two goals together in this section.

Gene regulatory networks govern which
genes are expressed in a cell at any given
time, how much product is made from each
one, and the cell's responses to diverse
environmental cues and intracellular signals.
Mathematical tools must be developed to
discover the architecture, function, and
dynamics of these networks from experimen-
tal data, to make useful computational
models of them, and to solve the systems of
mathematical equations and thus simulate
the behavior of the regulatory networks.
Similarly, complex microbial communities
play an extremely important role in several
of DOE's most distinguishing missions. These
communities catalyze such crucial environ-
mental processes as the recycling of carbon,
nitrogen, and trace elements; the transforma-
tions of contaminants from toxic to benign
forms; and the transformation of reduced and
oxidized forms of carbon. Mathematical
descriptions of microbial communities must

be developed based either on discrete models
or in terms of (possibly stochastic) differen-
tial equations.

Modeling Gene Regulatory Networks. The
first step in modeling a particular gene
regulatory network is to discover the archi-
tecture and function of the network. The
state of a cell can be characterized by the
concentrations of each of its components (the
DNA, RNA, protein molecules, and
multiprotein molecules). The development of
the cell's state over time can be described by
(1) a causal graph that tells for each molecule
(represented as a node in the graph) which
molecules (i.e., the parents) influence the
molecule (arrows are shown from parent
nodes into this node) and by (2) an actual
parametric description of the functional
relation between each node and its parents.
Directed, weighted edges reflect the influ-
ence of one molecule upon another. In cases
where several molecules collectively influ-
ence another, a hypergraph model is more
appropriate. The structure of these
hypergraphs can be used to understand the
fundamental properties of a regulatory
network, like the rate-limiting step in a
complex cascade of reactions.

Matroids, Petri nets, and polyhedral optimiza-
tion have found applications in understand-
ing the cycle structures in biochemical
pathways such as the Krebs cycle. These
combinatorial techniques can lead to under-
standing in situations where the gene regula-
tory network is not well characterized. They
also can be potentially used to design “what

GOALS 2 and 3: Computational Mathematics in Support of
Characterizing Gene Regulatory Networks and Simulating
Complex Microbial Communities
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if” questions to develop metabolically engi-
neered versions of the networks for
bioremediation, manufacture of pharmaceuti-
cals, and related applications.

The model must be developed so that it is
consistent with the observed experimental
data. The challenge is to reconstruct the gene
regulatory network from experimental
measurements on the dynamics of all the
genes. With recent advances in DNA
microarray technology, measurement of
gene-expression levels has become possible
on a genomic scale under various biochemi-
cal and environmental conditions. However,
much remains to be done to improve the
quality of the measurements and to reduce
the cost of these experiments. There is also a
need to develop statistical methods to extract
meaningful information from such noisy data.

Constructing the causal graphs that represent
gene regulatory networks is done through
careful experimentation and painstaking
manual inference. Automatic or semiauto-
matic methods for inferring the architecture
of regulatory networks will be required in the
future. One proposed method uses hierarchi-
cal clustering algorithms. Unfortunately, the
sensitivity of this approach to noise is not
understood, and, in addition, only the correla-
tions and not the causal relations among the
various genes and signaling pathways can be
identified. Another drawback of this class of
methods is that they may miss alternative
pathways that are followed during stressed
conditions. While this class of methods may
therefore not be suitable for explaining and
predicting the dynamical behaviors of the
underlying systems, they may still be useful
for organizing data and for discovering
patterns.

Methods for reverse-engineering gene net-
works must be developed to identify network
structure from microarray measurements,
recovering causal relations, interactive
effects, and alternative pathways in addition
to dominant pathways. Concepts from sys-
tem-identification theory, applied neural
networks, genetic algorithms, and Bayesian
models may prove valuable in this context.
The usefulness of these methods has been
demonstrated in recovering small networks
and in distinguishing among several compet-
ing models. However, for reconstructing
network structures de novo, they are not very
efficient in terms of both data requirements
and computational cost.

Another approach is to model gene regula-
tory networks with systems of ordinary
differential equations and to estimate the
connectivity parameters using various statis-
tical methods such as singular value decom-
position and robust regression. These
methods are efficient in recovering the
architecture for large networks such as those
that occur in natural genomes. Much in the
spirit of systems biology, the goal of these
methods is to extract the gene regulatory
networks on a global scale and to do so
efficiently to identify individual subnetworks
in a first draft of the entire network's topol-
ogy, upon which further, more local analysis
can be based.

While promising, these efficient large-scale
methods are only in their early stages of
development, and much research will be
required before they will become routine
tools for systems biology. For example, in
eukaryotic cells, significant time delays may
result from biochemical species crossing the
nuclear membrane. Such species may interact
in small numbers so that biological noise
becomes significant. Moreover, some proteins
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may form complexes whose effects cannot be
deduced from their components. Existing
methods, therefore, will need to be adapted
to include time delays, stochasticity, and
combinatorial effects.

Once a model of the network has been
constructed, its behavior can be modeled.
From a functional point of view, a regulatory
network consists of a long chain of chemical
reactions modeled by ODEs. Reactions
involving molecules present in high concen-
trations might be described by a determinis-
tic differential equation model, whereas
reactions involving molecules present in
moderate concentrations might be described
by a mesoscale stochastic differential equa-
tion model. The modeling of reactions involv-
ing molecules present in low concentrations
requires a purely stochastic approach. A gene
regulatory network typically will include all
of these situations simultaneously. Research
is needed in formulating and understanding
the behavior of such a model and where it
can be simplified without sacrificing its
intended predictive capabilities. The long-
term success of GTL relies on our ability to
effectively model phenomena described by
systems of stochastic evolution equations.

However, the basic mathematical theory of
these types of systems does not provide an
adequate foundation for understanding the
behavior of complex biological systems.
Furthermore, our knowledge of numerical
approximation of stochastic systems lags
considerably behind our knowledge of deter-
ministic systems. A critical mathematical issue
in developing methodologies for simulating
these types of systems is the large number of
stochastic degrees of freedom that must be
modeled. Simplistic Monte Carlo approaches
will rapidly become computationally intrac-
table. Approaches such as the polynomial

chaos techniques currently under develop-
ment offer the possibility of simulating
stochastic systems more efficiently than
Monte Carlo; however, these types of ap-
proaches are currently limited to a modest
number of stochastic variables.

In contrast to reaction models used in other
areas of science and engineering, models for
gene regulatory networks are not nearly so
well established. As described above, the
graph that defines the stoichiometry of the
reaction network can be determined, with
some uncertainty, by statistical analysis of
bioarray data. Parameters such as reaction
rates and probabilities are known only
approximately. Hence it is also important to
be able to assess the effect of these types of
uncertainties in the system structure and
parameters on its behavior. Sensitivity analy-
sis, the tool by which one can quickly ascer-
tain the parameters to which the system is
most sensitive, will greatly facilitate model
development and analysis.

Sensitivity analysis for ordinary and partial
differential equation systems has been highly
successful and widely used in many areas of
science and engineering. Extending this
computational tool to the class of generalized
dynamical systems outlined above, however,
is not a straightforward problem. Furthermore,
the structural stability (i.e., the stability of the
qualitative behavior of the system with respect
to perturbations to its input) needs to be
understood. Tools for bifurcation analysis
also are needed and will face similar theoretical
and computational challenges for this quite-
general class of problems. Gene regulatory
systems are complex feedback control systems.
Tools and methodologies from this area will
be invaluable in understanding their structure
but face similar challenges due to the hybrid
multiscale nature of this class of problems.
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Research leading to understanding of
multiscale phenomena will be required. In
general, long-term basic mathematics re-
search is needed for developing methodolo-
gies for multiscale problems. Multiscale
phenomena appear in a number of forms in
GTL. There are disparate time scales that
must be represented in simulations. We need
to be able to represent complex metabolic
processes that are regulated by gene regula-
tory networks. We would like to develop
simplified representations of subnetworks
that effectively model the behavior of that
submodel in large systems. In studying
microbial communities, we would like to be
able to develop models that represent the
aggregate behavior of the community in
much the same spirit as field theories in
physics. Substantial additional research is
required to develop appropriate methodolo-
gies for addressing the multiscale aspects of
modeling microbial communities. Coarse-
graining techniques will be necessary in the
incorporation of information into biological
models describing processes occurring at the
larger scale. Research is required for devel-
opment of techniques for coarse-graining and
theory to assess how well and under what
conditions the coarse-grained models retain
the required predictive capabilities. The
coarse-grained models may themselves be
discrete or hybrid systems.

Robust parameter estimation. To create
realizations of the biological models, it is
necessary to estimate relevant model param-
eters from experimental data. One major
area for mathematical and statistical research
is the development of robust parameter-
estimation procedures for the noisy environ-
ments characteristic of biological systems.
Noisy parameter estimation arises in both the
development of models for molecular pro-
cesses in cells and in assembling the

submodules into an integrated model for the
overall community. Approaches for param-
eter estimation need to be integrated with
methodologies for sensitivity analysis and
principal component analysis. These types of
tools provide the functionality to identify key
parameters that have a large effect on the
overall dynamics and to identify critical
subprocesses of the system.

Modeling microbial communities. Construct-
ing models of microbial communities in their
natural environment at a molecular level
involves a number of steps. Models of cellular
molecular processes, such as those discussed
above, will be used. These models must
include not only how the process works in
isolation but also how gene regulatory
networks regulate the process and how
environmental factors modulate its behavior.
These models must then be synthesized into
models for each of the types of cells living in
the community. Cellular models must then be
integrated into a model for the community's
environment. As GTL research progresses,
developing tools not only to simulate the
community but also to control its behavior
will be required.

Once an initial model for the community has
been developed, we can begin to simulate
and analyze the behavior of the community.
Initial simulations with the model will be
used to validate the model. The validation of
the model will involve close feedback with
the individual component modules that are
part of the model as the individual sub-
systems are refined to improve comparisons
with databases of experimental data.

Once models for the various subprocesses
have been developed, they will be integrated
into a large stochastic model for the entire
community. The models for subprocesses will
range from stochastic differential equations
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to discrete stochastic processes as well as
hybrid models that include aspects of both.
There are a number of strategies for develop-
ing models for cellular communities that
represent different levels of both spatial and
biochemical fidelity. Although several prom-
ising approaches are being developed in the
biological and biomedical communities for
modeling multicellular systems, substantial
additional development will be required for
them to adequately model a natural micro-
bial community.

Analysis tools will be required. Another
critical area of mathematical and statistical
research needed for developing simulation
capability for microbial systems is to develop
the tools needed for analysis of both compu-
tational and simulation data. For experimen-
tal data, the tools should be capable of
dealing with large but noisy data sets. We will
need to develop tools for making justifiable
statistical inferences from this type of data.
For computational data we will need to
analyze large volumes of data that represent,
in some fashion, an ensemble of solutions to
the system. Here, the volume of data is
sufficiently large that we will need to develop
mathematical tools for analysis rather than
relying on visualization paradigms.

Ignoring algorithmic and computational
issues, systems of stochastic differential
equations can be linked to a statistical model
(i.e., a probabilistic model for the actual
observed data). Subsequently, the unknown
parameters in this model (i.e., the coefficients
in the stochastic differential equations) are
estimated with maximum likelihood estima-
tion. The uncertainty of parameter estimates
also needs to be provided so that tests can
determine which effects in each molecule-
specific stochastic differential equation are

significant and thus should be included in the
model. Model selection is a relevant statisti-
cal research area.

The statistical models result in Bayesian
models by treating the unknown coefficients
in the stochastic differential equations as
random variables with a prior distribution.
Bayesian models have the attractive property
of being able to incorporate naturally prior
information on the actual parameter values.

Modeling the complete cell with a huge
system of stochastic differential equations
corresponds with fitting the complete under-
lying probabilistic system as a whole to the
observed data. The corresponding statistical
models are referred to as parametric models.
In semiparametric models, contrary to fully
parameterized models, only a component of
the whole system is modeled and no assump-
tions are made about the rest of the underly-
ing system generating the data. All observed
data are used, which makes this
semiparametric approach truly different from
just modeling a few system components and
ignoring all data on other components, a
typical approach followed in current litera-
ture. Contrary to fully parameterized models,
in a semiparametric model the modeled
component is only estimated and fitted,
resulting in much better finite sample perfor-
mance of parameter estimates. Second, by
modeling the whole process, it is much more
likely that the model is misspecified and
nonidentified, so that none of the parameter
estimates and corresponding confidence
intervals can be trusted. In particular,
semiparametric modeling can be used to
minimize the modeling of many hidden
unobserved variables not of interest and
thereby is a practical way of dealing with
many system variables that are only partly
observed. Finally, estimation methods in
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semiparametric models are much less com-
puter intensive than fitting completely
parameterized models. For these reasons, the
use of semiparametric models will represent
an important approach to achieving the final
goal of modeling (learning) the whole system.
In particular, it will allow reliable findings in

an incremental fashion (the preferable
learning method). Although semiparametric
models are routinely and successfully applied
in medical research, epidemiologic studies,
and so on, they have not been developed and
used in biological research.
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Appendix B: Workshop Agenda

Mathematics Workshop for the Genomes to Life Program
Gaithersburg Hilton

620 Perry Parkway, Gaithersburg, MD

March 18–19, 2002

Organizers
David Brown Lawrence Livermore National Laboratory
John Guckenheimer Cornell University
Esmond G. Ng Lawrence Berkeley National Laboratory

Program Managers
Gary Johnson MICS
John Houghton BER

Purpose
The purpose of the workshop is to bring together leaders in biology and mathematics to
identify the long-term mathematics research needs in the biological areas represented by
GTL. Several speakers will give overviews of different areas in which applied and computa-
tional mathematics are expected to play an important role in this program. Most of the
workshop will be spent in smaller group discussions on specific topics, with the goal of identi-
fying the key areas of mathematics research that will contribute to GTL. The outcome of this
meeting will be the preparation of a report that describes the anticipated mathematical
challenges in GTL in the fields of differential equations, stochastic methods, combinatorial
methods, statistical analysis, optimization, and other relevant areas. DOE will use this report
in the development of the GTL program. Similar reports are being produced by workshops
on Computational Infrastructure, Computer Science, and Imaging, also being held during the
first part of the 2002 calendar year.

Monday, March 18, 2002

8:15–8:30 a.m. Welcoming Remarks, Workshop Logistics

8:30–9:00 a.m. Gary Johnson and John Houghton: DOE Vision – OASCR and OBER

9:00 a.m. Overview Presentations

The presentations are meant to collectively give an overview of the math-
ematical needs for the Genomes to Life Program, emphasizing breadth
instead of depth.

9:00–9:45 a.m. DeWitt Sumners, FSU: Topological Models in Cellular Biology

9:45–10:30 a.m. Steven Salzberg, TIGR: Genome Comparisons: Detecting
Large-Scale Rearrangements and Single Nucleotide Polymorphisms

10:30–10:45 a.m. Break

10:45–11:30 a.m. John Guckenheimer, Cornell: Multiple Time scales in Dynamical Models
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11:30 a.m.–12:15 p.m. David Dixon, PNNL: Mathematical and Computational Needs for
GTL—A Systems Biology Perspective

12:15–1:15 p.m. Lunch: AMS Program Perspective

Lunch Speaker Chuck Romine, OASCR, MICS

1:15–2:00 p.m. Drew Endy, MIT: Math-Driven Experiments will Bring Genomes to Life

2:00– 4:45 p.m. Breakout Sessions

The purpose of the first set of breakouts is to identify math areas that are
relevant to the GTL program and potentially can lead to breakthroughs.

Breakout Sessions

• Differential equations (ODEs, DAEs, PDEs, dynamical systems)
• Stochastic methods
• Combinatorial Methods (discrete methods, optimization)
• Statistical Analysis
• None of the above

4:45–6:00 p.m. Quick Summary Presentations from Breakout Groups

6:00 p.m. End of the First Day

Tuesday, March 19, 2002

8:15–8:30 a.m. Logistics

8:30–10:15 a.m. General Discussions
About 20 minutes per breakout group; provide a detailed summary
report of the first day’s breakout sessions.

Open discussion.

10:15–10:30 a.m. Break

10:30 a.m. Breakout Discussions (same groups)
The purpose of the second set of breakouts is to identify potential
breakthroughs in biology over the next 10 years that might be enabled

 by advances in mathematics.

Lunch will be served.

1:00–1:30 p.m. Preparation of Summaries by Breakout Session Coordinators

1:30–3:30 p.m. Summary Presentations from Breakout Groups

3:30–3:45 p.m. Break

3:45–5:30 p.m. Discussion on the Preparation of Report for DOE.
The report should include both mathematics and biology perspectives.
Volunteers from both fields are needed.

5:30 p.m. Workshop Adjourns




