Genomic Science Program. Click to return to home page.

Genomic Science Program

Systems Biology for Energy and the Environment

Department of Energy Office of Science. Click to visit main DOE SC site.

Genomic Science Program

DOE Genomic Science Program 2014 Strategic Plan

cover image

Mission-Driven Systems Biology

Publication date: October 2014

Suggested citation: U.S. DOE. 2014.DOE Genomic Science Program: Mission-Driven Systems Biology. 2014 Strategic Plan. U.S. Department of Energy Office of Science.

Download full document:

Background: DOE-sponsored research has been critical to developing systems biology into the expansive conceptual approach described in the 2009 report by the National Academy of Sciences, A New Biology for the 21st Century:

"Systems biology seeks a deep quantitative understanding of complex biological processes through dynamic interaction of components that may include multiple molecular, cellular, organismal, population, community, and ecosystem functions. It builds on foundational large-scale cataloguing efforts (e.g., genomics, proteomics, metabolomics, etc.) that specify the 'parts list' needed for constructing models. The models relate the properties of parts to the dynamic operation of the systems they participate in."

High-throughput genome sequencing of microbes, plants, and complex environmental assemblages of organisms has provided the vital blueprint necessary to understand the functional potential of organisms and interactive communities. By examining the translation of genetic codes into integrated networks of regulatory elements, catalytic proteins, and metabolic networks that define all living organisms, systems biology research sheds light on the fundamental principles that govern functional properties of organisms and how their processes respond to community interactions and environmental variables.

DOE's Genomic Science program supports systems biology research aimed at identifying these foundational principles driving biological systems of plants, microbes, and multispecies communities relevant to DOE missions in energy and the environment. Building on the foundation of sequenced genomes and metagenomes, the program focuses on a tightly coupled approach that combines experimental physiology, omics-driven analytical techniques, and computational modeling of functional biological networks.

  • Genomics-Enabled Plant Biology for Determination of Gene Function DE-FOA-0002601 [12/16/21]
  • Systems Biology-Enabled Microbiome Research to Facilitate Predictions of Interactions and Behavior in the Environment DE-FOA-0002602 [12/15/21]
  • Biosystems Design to Enable Safe Production of Next-Generation Biofuels, Bioproducts, and Biomaterials DE-FOA-0002600 [12/13/21]
  • SBIR/STTR Funding Call for Climate, Energy and Scientific R&D DE-FOA-0002555 [12/13/21]
  • Quantum-Enabled Bioimaging and Sensing Approaches for Bioenergy DE-FOA-0002603 [11/15/21]
  • NAS Report: Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology. More »
  • JBEI's Jay Keasling named Office of Science Distinguished Scientist Fellow. More »
  • DOE BER Early Career Research Funding Opportunity Preapplications due Oct. 21. More »
  • Systems Biology of Bioenergy-Relevant Microbes Projects Awarded. [7/21] More »
  • BER Bioimaging Science Program announces new awards. [7/21] More »
  • DOE BER Request for Information – Responses due by 10- 31-21. More »
  • DOE BER Awards $45.5 Million [6/21] More »
  • More News and Announcements »

Publication Highlights

  • Publication Highlights »
  • Search Highlights »