Multi-omics workflows to support data integration for the National Microbiome Data Collaborative

Bin Hu⁴* (bhu@lanl.gov), Faiza Ahmed², Anubhav³, Jeffrey Baumes², Jonathan Beezley², Mark Borkum³, Lisa Bramer³, Shane Canon¹, Patrick Chain⁴, Danielle Christianson¹, Yuri Corilo³, Karen Davenport⁴, Brandon Davis², Meghan Drake⁵, William Duncan¹, Kjiersten Fagnan¹, Mark Flynn⁴, Marcel Huntemann¹, Julia Kelliher⁴, Sonya Lebedeva¹, Po-E Li⁴, Mary Lipton³, Chien-Chi Lo⁴, Douglas Mans³, Stanton Martin⁵, Lee Ann McCue³, David Millard³, Kayd Miller¹, Nigel Mouncey¹, Chris Mungall¹, Paul Piehowski³, Elais Player Jackson⁴, Anastasiya Prymolenna³, Samuel Purvine³, TBK Reddy¹, Rachel Richardson³, Migun Shakya⁴, Montana Smith³, Jagadish Chandrabose Sundaramurthi¹, Deepak Unni¹, Pajau Vangay¹, Bruce Wilson⁵, Donny Winston⁶, Elisha Wood-Charlson¹, Yan Xu⁴, **Emiley Eloe-Fadrosh**¹

¹ Lawrence Berkeley National Laboratory, Berkeley, CA; ² Kitware, Clifton Park, NY; ³ Pacific Northwest National Laboratory, Richland, WA; ⁴ Los Alamos National Laboratory, Los Alamos, NM; ⁵ Oak Ridge National Laboratory, Oak Ridge, TN; ⁶ Polyneme LLC, New York, NY

Project Goals: The National Microbiome Data Collaborative (NMDC) is a pilot initiative launched to support microbiome data exploration and discovery through a collaborative, integrative science gateway. With a community-centered design approach, the NMDC team is building an open-source, integrated data science ecosystem that leverages existing data standards, and data resources and infrastructure within the DOE complex.

Abstract

Standardized omics workflows drive the analysis of raw omics data and ensures the data stored in the National Microbiome Data Collaborative data portal^[1] are processed in a uniform fashion and comparable across studies. The NMDC source code repository^[2] offers workflows to perform Illumina paired-end reads quality control, metagenomic and metatranscriptomic, metabolomic and metaproteomic analysis. These best practice workflows are developed on top of decades of omics analysis experience gathered from participating institutions, with all computing environment dependencies removed, and coded in the workflow description language (WDL^[2]). They are packaged as software containers^[3] and documented^[4] to enable microbiome researchers to install and run workflows locally, to understand the tools and uses for each workflow, and to further allow local workflow improvements or customisations to meet their specific requirements. By leveraging these workflows, researchers can analyze their data by themselves and expect the same results as if their data were processed by the NMDC portal. A web platform (NMDC EDGE) running these workflows interactively will be provided through the next version of the EDGE bioinformatics suite and similar integration is planned for the DOE KnoweldgeBase (KBase) in the future.

References

- [1] https://data.microbiomedata.org/
- [2] https://github.com/microbiomedata/
- [3] https://www.commonwl.org
- [4] https://hub.docker.com/u/microbiomedata
- [5] https://nmdc-workflow-documentation.readthedocs.io/en/latest/

Funding statement

This work is supported by the Genomic Science Program in the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) under contract numbers DE-AC02-05CH11231 (LBNL), 89233218CNA000001 (LANL), DE-AC05-00OR22725 (ORNL), and DE-AC05-76RL01830 (PNNL).