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Project Goals: The long-term goal for this Project is to realize secure biodesign strategies 
for microbial systems that operate in the dynamic abiotic and biotic conditions of natural 
environments, thus enabling systems-level and rational biological design for field use. 
There are several key challenges to incorporating safeguard systems at the design stage 
including: (1) lack of knowledge for how well safeguards operate across the broad set of 
environmental and physiological conditions that an organism experiences; (2) a need to 
integrate the safeguard with other cellular components so that it can sense and recognize 
specific signals from the intracellular or extracellular environment, and mediate a 
response; and (3) a need for rapid and reliable methods to engineer and optimize the 
biological components for safeguard construction and functional integration. To address 
these challenges, we propose to utilize recent advances in the fields of synthetic biology, 
artificial intelligence (AI), and automation, which are creating the conditions for a 
paradigm shift in our understanding of the ways that cellular function can be designed at 
the level of bacterial communities. 
 

The development of genetically modified and engineered organisms necessitates the creation 
of secure and efficient biocontainment systems to prevent these organisms from escaping the 
laboratory and endangering the environment, public health, and public perception of scientific 
research. Safeguards based on controlled activation of a self-targeting CRISPR/Cas9 “self-
destruct” mechanism that activates outside of laboratory conditions are transferable between 
different organisms, cost-effective, and relatively easy to implement in comparison to other 
safeguard systems. However, the variability of CRISPR/Cas cleavage efficiency within a 
genome (and even within the same gene) [1, 2] represents a challenge in choosing efficient self-
targeting guide RNAs (gRNAs) for self-destruction, particularly as that variability is heightened 
under different environmental conditions. We have developed a machine-learning prediction 
method, CRISPRAct, that models this behavior across different environmental conditions to 
assist in identifying gRNAs for use in the proposed secure biosystem.  

We hypothesized that dynamic gene expression responses to varying physiological 
conditions would influence the cell killing activity of the CRISPR/Cas9 system. We created a 
library of gRNAs composed of ~180,000 gRNAs corresponding to sites throughout the 
Escherichia coli MG1655 genome and control gRNAs (~20,000) that did not match. Using this 
library, we conducted screens for killing activity in three physiological conditions: rich (LB) 
media in exponential growth; defined (M9) media in exponential growth; and rich media in 
stationary phase. We then captured sequence data representing the transcriptomes corresponding 
to these conditions, and the killing activity of the gRNAs over time. Using our libraries, we 
identified ~6,000 guides that were statistically overrepresented (via ANOVA testing) for 



physiology-specific function. A small subset of gRNAs (174) were “outlier switches” that 
exhibited outstanding killing activity in a specific physiological condition, while their high 
prevalence in another condition was consistent with providing a growth advantage. The library 
screens generated an extensive dataset of ~530,000 data points used to develop CRISPRAct to 
interrogate features influencing gRNA killing activity.   

The CRISPRAct model combines a state-of-the-art natural language processing (NLP) model 
based on the Google AI ALBERT architecture [3] with conventional neural network (NN) 
models to predict the efficiency of gRNAs under various conditions. The NLP model treats 
genomic context as a machine-interpretable “language” by training embeddings on a 
representative set of twelve E. coli genomes [4] divided into “sentences” of seven “words” that 
each consist of three bases, and then fine-tuning on the gRNA activity dataset. The NN models 
use a set of 428 features including gRNA positional and physicochemical properties [1], as well 
as the E. coli growth phase in the form of optical density, and environmental factors including 
media growth concentrations. The results of these models are combined through a polynomial 
regression to predict the percent change in E. coli cell population after Cas9 induction. 
CRISPRAct achieves a Mean Square Error of 0.13 and Spearman Correlation Coefficient of 
47.31% on a test dataset of 71,228 gRNAs. This level of model performance is comparable to 
other efforts to predict gRNA activity. However, due to our approach of leveraging physiological 
conditions to train models, CRISPRAct offers a more resilient basis for transfer learning in novel 
organisms and environmental conditions without having to undergo a costly re-training process. 
This strategy will decrease the time and effort needed by other researchers to identify gRNAs 
with desired behaviors in various physiological conditions. 
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