Integrating Metabolomics and Proteomics Reveals Biotic and Abiotic Controls on CO2 and CH4 Production in Peatlands

Rachel M. Wilson1* (rmwilson@fsu.edu), Malak M. Tfaily2, Yueh-Fen Li3, Alexandra Cory1, Ben Woodcroft4, Suzanne Hodgkins3, Patrick Crill5, Gene Tyson4, Scott Saleska2, Jeff Chanton1, and Virginia Rich3

1Florida State University, Tallahassee; 2University of Arizona, Tucson; 3The Ohio State University, Columbus; 4Australian Centre for Ecogenomics, University of Queensland, Brisbane; 5Stockholm University, Stockholm

http://isogenie.osu.edu

Project Goals: The objective of the IsoGenie3 Project is to discover how microbial communities mediate the fate of carbon in thawing permafrost landscapes under climate change. We are engaged in a systems approach integrating (a) molecular microbial and viral ecology, (b) molecular organic chemistry and stable and radiocarbon isotopes, and (c) state-of-the-art modeling, across an interconnected system of thawing permafrost and post-glacial lakes in Arctic Sweden.

Arctic peatlands contain a large reservoir of organic C (OC) that may become more available for microbial decomposition upon permafrost thaw and peat warming. Microbial decomposition of peat OC results in the production of CO2 and CH4 which may be emitted to the atmosphere, exacerbating climate warming. A decade of radiocarbon dating in non-permafrost and discontinuous permafrost peatlands suggests that CO2 and CH4 are produced from dissolved phase OC that is much younger than the solid peat. Even when CO2 and CH4 production are observed to increase in response to warming, radiocarbon evidence suggests that peat OC is not mobilized to fuel this increased production. To determine what is fueling the enhanced production in thawing peatlands, we have utilized a suite of complementary environmental metabolomics and proteomics datasets. This approach has highlighted the previously unrecognized importance of abiotic reactions for producing CO2 in peat. Sterilized incubations revealed the abiotic reaction of N-compounds which can subsequently undergo decarboxylation to produce CO2, and may also immobilize N through the creation of condensed N-containing rings. Intermediates of biotic reactions, such as de/nitrification, have been shown to participate in similar abiotic transformations suggesting that the biotic and abiotic cycles are intricately linked and may influence CO2 and CH4 production in peatlands in complex ways. While abiotic reactions are likely to increase in response to warming (kinetic control), the response of biotic reactions to climate change is complicated by the response of the organisms to warmer temperatures, both their current enzymatic temperature sensitivity and the relative importance of acclimation, adaptation, and assembly processes in changing community-level enzymatic behavior, and therefore may prove more difficult to predict without further characterization of the transformations and interaction with the abiotic cycle.

This study was funded by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research, grants DE-SC0010580 and DE-SC0016440.