Title
Investigating Lignin Modifying Enzymes and their Synergistic Effect with Ionic Liquid Pretreatment

Paul Wolski1,2, Carolina Barcelos1,3, Michael Doane1, Kai Deng1,2, Gabriella Papa3, Alberto Rodriguez1,2, Blake Simmons1,3, Kenneth Sale1,2

Deconstruction

1. Joint BioEnergy Institute, Emeryville, CA 94608, USA
2. Sandia National Laboratories, Livermore, CA, 94550, USA
3. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

https://www.jbei.org/

Project Goals

Biomass recalcitrance is a function of the plant’s state of polymerization of various polymers, including sugars and lignin, the interactions among these polymers and their crystallinity. Extracting the valuable sugars and aromatics from biomass requires harsh chemical and thermal pretreatment. We hypothesized that by first breaking down lignin using laccases, the severity and thus the expense of the pretreatment process can be reduced and evaluated the synergistic effect of Lignin-Modifying Enzymes (LME’s) and ionic liquid pretreatment on glucose yields and reducing the amount of other enzymes required.

Further LME engineering may enhance the rate of lignin breakdown to monomers for fuels or chemicals.

Depolymerization of lignin and subsequent valorization and enhancement of saccharification and reducing the overall cost of 2nd and 3rd generation biofuels by reducing required enzyme loading and cost.

Funding statement.

This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.