A Concerted Systems Biology Analysis of Aromatic Metabolism in

Rhodococcus opacus PD630

Garrett W. Roell1*, Rhiannon R. Carr1, Tayte Campbell2, Zeyu Shang1, William R. Henson1,
Jeffrey Czajka1, Hector Garcia Martin3,4,5,6, Fuzhong Zhang1, Marcus Foston1, Gautam
Dantas2,7,8,9, Tae Seok Moon1, and Yinjie J. Tang1

1Department of Energy, Environmental and Chemical Engineering, Washington University in St.
Louis, St. Louis, MO, 63130, USA; 2The Edison Family Center for Genome Sciences and Systems
Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA; 3
DOE, Joint BioEnergy Institute, Emeryville, CA, 94608, USA; 4DOE, Agile BioFoundry,
Emeryville, CA, 94608, USA; 5Biological Systems and Engineering Division, Lawrence Berkeley
National Lab, Berkeley, CA, 94720, USA; 6BCAM, Basque Center for Applied Mathematics,
Bilbao, Spain; 7Department of Pathology and Immunology, Washington University in St. Louis
School of Medicine, St. Louis, MO, 63108, USA; 8Department of Biomedical Engineering,
Washington University in St. Louis, St Louis, MO, 63130, USA; 9Department of Molecular
Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63108, USA
Project Goals:

1. Use 13C-MFA to reveal R. opacus’ phenol metabolism
2. Connect flux data with transcription profiling and metabolite analysis to show phenol metabolism regulations.
3. Determine whether R. opacus phenol utilization is hindered by other aromatic and non-aromatic substrates.
4. Test adaptively evolved strains to determine how their central metabolic network has changed.

Rhodococcus opacus PD630 metabolizes aromatic substrates and naturally produces branched-chain lipids, which are advantageous traits for lignin valorization. To provide insights into its lignocellulose hydrolysate utilization, we performed 13C pathway tracing, transcriptional profiling, biomass composition analysis, and metabolite profiling in conjunction with 13C-metabolic flux analysis (MFA) of phenol metabolism. We found that 1) phenol is metabolized through the ortho branch of the β-ketoacip late pathway; 2) phenol-fed cultures have high TCA cycle fluxes with overflow succinate secretion; 3) NADPH is generated mainly via NADPH-dependent isocitrate dehydrogenase; 4) Active cataplerotic fluxes increase plasticity in the TCA cycle; and 5) gluconeogenesis occurs partially through the reversed Entner–Doudoroff pathway (EDP). We also found that phenol-fed *R. opacus* PD630 generally has lower sugar phosphate concentrations (e.g., fructose 1,6-bisphosphatase < 5%) compared to metabolite pools in glucose-fed *Escherichia coli* (set as 100%), while pool sizes of its TCA metabolites (malate, succinate, and α-ketoglutarate) are higher than those in *E. coli*. In addition, glucose catabolite repression is absent in *R. opacus*, but phenol utilization can be hindered by the presence of other aromatic substrates (e.g., benzoate). Three adaptively-evolved strains display different growth rates when fed with phenol as a sole carbon source, but they demonstrate a conserved central flux network.

This project is supported by the DoE BER grant (DESC0018324).