SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum

Aymerick Eudes¹,²*(ageudes@lbl.gov), Tanmoy Dutta¹,³, Kai Deng¹,⁴, Nicolas Jacquet¹,⁵, Anagh Sinha¹,², Veronica Teixeira Benites¹,⁷, Edward E. K. Baidoo¹,⁷, Scott E. Sattler⁸, Trent R. Northen¹,²,⁹, Seema Singh¹,³, Blake A. Simmons¹,⁷, and Dominique Loqué¹,²

¹Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA
²Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
³Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94551, USA
⁴Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94551, USA
⁵Laboratory of Biological and Industrial Chemistry, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
⁶Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
⁷Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
⁸Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
⁹Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek CA, 94958, USA

Project Goals: The most abundant organic material on earth is lignocellulosic biomass or non-food plant material. JBEI’s mission is to convert biomass to biofuels and bioproducts. The goal is to provide the nation with clean, renewable transportation fuels and chemicals. Building a successful lignocellulosic biofuels industry depends, in part, on developing specialized bioenergy crops or feedstocks that are optimized for deconstruction and conversion. Understanding the molecular basis underlying the synthesis of lignocellulosic biomass is a prerequisite to achieve these goals.

https//www.jbei.org/

Abstract: Lignin in plant biomass represents a target for engineering strategies towards the development of a sustainable bioeconomy. In addition to the conventional lignin monomers, namely p-coumaryl, coniferyl and sinapyl alcohols, tricin has been shown to be part of the native lignin polymer in certain monocot species. Because tricin is considered to initiate the polymerization of lignin chains, elucidating its biosynthesis and mechanism of export to the cell wall constitute novel challenges for the engineering of bioenergy crops. Late steps of tricin biosynthesis require two methylation reactions involving the pathway intermediate selgin. It has
recently been demonstrated in rice and maize that caffeate O-methyltransferase (COMT) involved in the synthesis syringyl (S) lignin units derived from sinapyl alcohol also participates in the synthesis of tricin in planta. In this work, we validate in sorghum (Sorghum bicolor L.) that the O-methyltransferase responsible for the production of S lignin units (SbCOMT / Bmr12) is also involved in the synthesis of lignin-linked tricin. In particular, we show that biomass from the sorghum bmr12 mutant contains lower level of tricin incorporated into lignin, and that SbCOMT can methylate the tricin precursors luteolin and selgin. Our genetic and biochemical data point toward a general mechanism whereby COMT is involved in the synthesis of both tricin and S lignin units.

Funding statement.
This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy.