Microbial metabolic engineering to produce alcohols from cellulosic hydrolysates

Jaewon Lee¹,², Stephen L. Lane¹,², Yong-Su Jin¹,²* (ysjin@illinois.edu)

¹Center for Advanced Bioenergy and Bioproducts Innovation (CABBI); ²Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL

http://cabbi.bio

Project Goals:

Alcohols are much less toxic than other advanced biofuels and yeast can produce and tolerate them up to 150 g/L. We have engineered yeast strains capable of producing high titers (100-150 g/L) of ethanol (mono-alcohol) and 2,3-butanediol (di-alcohol) not only from glucose but also from prevalent sugars (cellobiose, xylose, and galactose) in the hydrolysates of terrestrial and marine biomass. While alcohols can be used as a biofuel directly, they can be also catalytically upgraded into various chemicals. Ethanol and related alcohols, such as n-butanol can be dehydrated into corresponding olefins with high selectivity and conversion yield. 2,3-Butanediol can be also dehydrated into methyl ethyl ketone (MEK), a potential platform chemical towards synthesis of jet and diesel fuels and 1,3-butadiene, a monomer of synthetic rubber361. Given the feasibility of high titer production and catalytic upgrading, we will engineer east strains to produce various alcohols from inexpensive sugar sources with a high yield and titer. We will develop and use a versatile and fully automated biofoundry, the Illinois Biological Foundry for Advanced Biomanufacturing (iBioFAB) for strain improvement.

Funding statement.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SCxxxxxx (J.L., S.L.T. and Y.-S. Jin through CABBI).