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Project Goals: Our project works towards a fundamental understanding of the key 
molecular mechanisms driving beneficial plant-microbial interactions in superior 
switchgrass genotypes adapted to a range of resource limitations. Plant-microbe 
interactions are examined during establishment to gain insight into how symbiotic and 
associative microbes improve plant performance and carbon stabilization in marginal soils. 
We will combine focused (single plant-microbe pairing) and 'community' systems biology 
approaches to examine the complex interplay among plants, microbes, and their physio-
chemical environment. 

In the rhizosphere, root exudation is a key process for C transfer into the soil, influencing the 
role of soil microbial communities in the decomposition of organic matter and in nutrient 
cycling. Root exudates have been shown to increase the number and activity of soil microbes and 
fauna found in the rhizosphere through a myriad of complex interactions. Soil microorganisms 
depend upon plant C and, in turn, potentially provide plants with nitrogen (N), phosphorus (P) 
and other mineral nutrients in part through decomposition of soil organic matter. We grew 
Alamo switchgrass (SG) in two types of greenhouse experiments to investigate how SG 
transcriptomes and exudates shape rhizosphere microbial communities, metagenomes, and 
metatranscriptomes and how these interactions are affected by abiotic stresses. The first group of 
experiments focused on the Alamo SG transcriptome, metabolome and physiology under a range 
of Pi supply conditions to explore the gene-to-metabolite networks responsible for coping with P 
starvation. The second experimental approach used Alamo SG clones growing 1-m soil profiles 
recreated in the greenhouse and applying 13CO2 stable-isotope labeling to trace SG 
photosynthate into fresh root exudates and the metagenomes and metatranscriptomes of the 
microbial communities that consume root exudates and debris. 
 
Sand-based:  Alamo SG seedlings were grown in sand culture over a 4-week period with 
nutrient media containing KH2PO4 concentrations ranging from 20µM to 600 µM (control). 
Plants growing at 200 µM KH2PO4, accumulated only 64.7% of the biomass present in plants 
grown at 600 µM, whereas plants grown in the presence of 20 µM only had 3.8% of the control 
biomass. Severe P limitation (20 µM) did not inhibit primary root growth, as has been frequently 
reported (e.g. Arabidopsis thaliana) and is considered a typical root system architectural change 
resulting from inhibition of primary root elongation by P limitation. At the transcriptional level, 
SG showed expected (previously known) and novel responses to P limitation. The number of 
gene transcripts and the strength of their response increased with the severity of P limitation both 
in shoot and root tissues. RNA-Seq data were analyzed with MapMan software to identify 
coordinated, system-wide changes in metabolism. During P limitation, a large number of gene 
transcripts related to lipid degradation, glycolipid biosynthesis as well as tryptophan synthesis 



were induced. For example, NPC4, encoding nonspecific phospholipase C, was markedly 
induced upon P limitation and is known to play an important role in the supply of phosphate 
from membrane phospholipids during P limitation. SG under P stress also showed large changes 
in the expression of genes involved in secondary metabolism and photosynthesis. It is surprising 
that a suit of genes related to light reaction were sensitively down-regulated in shoots, but also in 
roots experiencing P limitation.  Analyses of metabolites confirmed that P limitation led to a shift 
towards the accumulation of sugars and organic acids in roots relative to shoots. Shoots and roots 
show distinct adaptation patterns at the molecular and metabolic levels towards P limitation, 
suggesting that distinct P starvation response strategies are used for different plant organs in 
response to a shortage of P. Lipid remodeling is known to be a dramatic metabolic response to P 
starvation. The abundance of phospholipid species (PC, PE, PS) was significantly decreased in 
shoot under 20µM treatment; however, this response was not observed during more moderate P 
limitation (60µM and 200 µM). Membrane glycolipids, such as MGDG and DGDG, 
accumulated in roots during P limitation as compared to control. 
 
Soil-based:  Alamo SG clones were grown in mesocosms containing three horizons of 
Oklahoma pasture soil packed into 1m columns, to which one of five treatments (+N, +P, +N/+P, 
–H2O, and control) was applied. These treatments had a significant (p<0.05) effect on plant 
height, shoot biomass, and relative root biomass, with the greatest height and biomass observed 
in the +N/+P treatment and the least in the -H2O treatment, as expected. The +N/+P treatment 
also had a significant (p<0.05) positive effect on exopolysaccharide (EPS) abundance in top 
horizon bulk soil, though further analysis is required to determine if this EPS is plant or 
microbial in origin. After nine weeks, a subset of SG plants of each treatment were labeled with 
99 atom-percent 13CO2 for 6 days, and after 14 and 18 weeks, another two subsets were labeled 
for 12 days each. Labeled mesocosms were cored or destructively harvested to recover roots, 
rhizosphere soil, and bulk soil at different depths within the rooting profile. Bulk soil chemistry, 
density fractions, and microbial metagenomes are being used to determine how growing SG 
alters bulk soil characteristics with depth. Rhizosphere microbe metagenomes and 
metatranscriptomes, root exometabolites, and root transcriptomes extracted from these samples 
will be used to determine how SG-microbe interactions in the rhizosphere are delineated and 
how these networks respond to abiotic stress.  
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