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Project Goals: Comparison of the predictive accuracy of atom mapping algorithms.

The reaction mechanism of each chemical reaction in a metabolic network can be represented as a set of atom
mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product
metabolite. Atom mapping data for metabolic reactions open the door to a growing list of applications [1, 2, 3, 4].
Complete manual acquisition of atom mapping data for a large set of chemical reactions is a laborious process. Many
algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated
atom mappings? For more than five thousand metabolic reactions we compared the atom mappings predicted by
six atom mapping algorithms [5, 6, 7, 8, 9, 10]. We also compared these predictions to those obtained by manual
curation of atom mappings for over five hundred reactions distributed amongst all top level enzyme commission
number classes. Five of the evaluated algorithms had similarly high prediction accuracy over 91% when compared
to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions
catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the
algorithms were evaluated on their availability and advanced features such as the ability to identify equivalent atoms
and reaction centres, and the option to map hydrogen atoms. In addition to prediction accuracy, we found that
availability and advanced features were fundamental to the selection of an atom mapping algorithm.
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