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Project Goals: The long-term goal of this project is to enhance the water-use efficiency 
(WUE) and adaptability to hotter, drier climates of species that normally perform C3 
photosynthesis by introducing crassulacean acid metabolism (CAM). Photosynthetic 
performance and WUE will be enhanced in Arabidopsis and Populus by: 1) defining the 
genetic basis of key CAM modules in both eudicot and monocot CAM species, 2) 
characterizing the regulation of ‘carboxylation’, ‘decarboxylation’, and ‘inverse stomatal 
control’ gene modules of CAM via loss-of-function studies in model CAM species, 3) 
deploying advanced genome engineering technologies to enable transfer of fully functional 
CAM modules into C3 species and 4) analyzing the effects of these transgenic modules on 
‘stomatal control’, CO2 assimilation and transpiration rates, biomass yield, and WUE in 
Arabidopsis and Populus. 
 
Global warming trends are leading to increased terrestrial soil drying, reduced terrestrial net 
primary production and carbon sinks, global food security and future biofuel production, and the 
global expansion of drylands that already cover 42% of the earth’s surface. In order to offset 
these negative effects, an increased reliance upon crassulacean acid metabolism (CAM) crops or 
the introduction of CAM, a water-wise form of photosynthesis, into C3 food and bioenergy crops 
might serve as a useful strategy to improve the water-use efficiency (WUE) of sustainable 
biomass production systems in the future (1). CAM features inverse stomatal behavior, in which 
stomata are open at night for CO2 uptake when evapotranspiration rates are reduced compared 
with the daytime and closed during all or part of the day, thereby maximizing WUE. CAM also 



exploits a temporal separation of nocturnal CO2 uptake and fixation by phosphoenolpyruvate 
carboxylase (PEPC), which leads to the formation of C4 organic acids that are stored in the 
vacuole. The subsequent decarboxylation of these organic acids during the day releases CO2 and 
concentrates it around ribulose-1-5-bisphosphate carboxylase/oxygenase (RUBISCO), 
suppressing photorespiration, while resulting in carbohydrate production via the C3 Calvin–
Benson cycle.  

Detailed functional and integrative ‘omics analyses of several CAM model or crop 
species including Kalanchoe (2, phytozome.jgi.doe.gov), Mesembryanthemum crystallinum, 
Agave (3), and pineapple (4), have recently defined the basic genetic requirements for CAM. 
Both K. fedtschenkoi and M. crystallinum were selected recently as DOE JGI Flagship Genome 
species. The development of synthetic RNAi-mediated gene silencing strategies targeting 
multiple genes (5) and CRISPR/Cas9 strategies for precise genome editing (6) are expedient 
ways to down-regulate, knock-out, or alter the expression of specific gene modules or pathways. 
Loss-of-function studies of individual enzymes, metabolite transporters, and regulatory proteins 
or transcription factors are being used to provide critical insights into the basic genetic 
requirements for CAM. For example, RNAi-mediated gene silencing of specific CAM 
components, such as mitochondrial NAD-malic enzyme and cytosolic/plastidic pyruvate 
orthophosphate dikinase revealed not only impaired nocturnal CO2 uptake, but also reduced 
circadian clock-controlled phosphorylation of PPC (7). Other studies using RNAi lines of K. 
fedstchenkoi have shown that the route of nocturnal starch degradation is a key point of 
divergence between C3 photosynthesis and CAM species. In C3 species, hydrolytic starch 
degradation produced glucose and maltose, which is exported from the chloroplast as substrate 
for the provision of sucrose for growth. In contrast, phosphorolytic starch degradation in CAM 
species produces substrates such as glucose-6-phosphate, which is exported from the chloroplast 
for production of PEP in the cytosol (8). Such information is critical for knowing which genes to 
select when creating synthetic gene circuits to reconstruct CAM carboxylation and 
decarboxylation subpathways.  

Facile gene stacking strategies for the assembly of a large number of transcription units 
(TUs) with appropriate circadian and drought-inducible expression patterns are necessary for the 
genetic reconstitution of facultative CAM into host C3 species (9). We have created a plant-
specific position/adaptor/carrier vector system originally designed for engineering mammalian 
cells (10) that enables the rapid, reliable, and scalable creation of complex gene circuits using the 
Gibson isothermal assembly process (11). Design and construction of CAM-specific 
carboxylation and decarboxylation gene circuits containing 9 and 15 genes has been completed 
and are in the process of being introduced into Arabidopsis and Poplar. The gene circuits were 
designed to include mesophyll-specific, drought-inducible, and appropriately timed circadian 
expression patterns of the transgenes in order to engage the CAM pathway only during water-
deficit stress conditions. Lastly, tissue succulence has been successfully engineering in the C3 
photosynthesis model species A. thaliana in order to increased mesophyll cell size for increased 
malate storage capacity and reduced intercellular air space to limit internal CO2 diffusion out of 
the leaf during the day to favor refixation by ribulose 1,5-bisphosphate carboxylase oxygenase 
(RUBISCO) and thereby increases the capacity to perform CAM.  Added benefits of engineered 
tissue succulence included increased biomass production, increased WUE, and tolerance to 
water-deficit (drought) and salinity stress. The combination of engineered CAM and tissue 
succulence is expected to increase the WUE of bioenergy feedstocks and potentially expand their 
production into more marginal, abandoned, or semi-arid regions.  
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