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Project Goals: The goal of this effort is to construct a genome-scale kinetic model of 
Escherichia coli metabolism by making use of Ensemble Modeling (EM) concepts. 
Model parameterization is carried out using multiple flux datasets for different 
substrates and growth (aerobic vs. anaerobic) conditions. 
 
Kinetic modeling paradigm provides a promising platform to broaden our knowledge of cellular 
capacity and cell physiology beyond stoichiometric descriptions. However, developing kinetic 
models of metabolism at a genome-scale that faithfully recapitulate the effect of multiple genetic 
interventions is still an ongoing challenge. To this end, we introduce k-ecoli457, a genome-scale 
kinetic model of Escherichia coli metabolism that satisfies fluxomic data for a wild-type and 25 
mutant strains for different substrates and growth (aerobic vs. anaerobic) conditions. The k-ecoli457 
model contains 457 reactions and 337 metabolites accounting for all relevant reactions from the 
genome-scale iAF1260 model that carry flux under the experimental conditions of the flux 
measurements. These include reactions in glycolysis/gluconeogenesis, the Pentose Phosphate (PP) 
pathway, the TriCarboxylic Acid (TCA) cycle, anaplerotic reactions, amino acid 
synthesis/degradation, fatty acid oxidation/synthesis and a number of reactions in other parts of the 
metabolism, such as folate metabolism, cofactor and prosthetic group synthesis, alternative carbon, 
membrane lipid, cell envelope, nucleotide salvage and oxidative phosphorylation pathways. In 
addition, 295 regulatory interactions were extracted from BRENDA and EcoCyc and included in k-
ecoli457. The model was also supplemented with a simplified version of the biomass equation 
including all the constituent precursors. Model predictions were tested against multiple 
experimentally measured datasets that were not used during model parameterization. These included 
(i) 898 steady-state metabolite concentrations for twenty of the mutant strains [1-4], (ii) 319 
Michaelis-Menten constants (211 Km and 108 kcat values) from BRENDA and EcoCyc, and (iii) 320 
experimentally reported product yields for designed strains spanning 24 different bioproducts. 
Comparisons revealed that 63% of the predicted metabolite concentrations as well as 60% and 64% 
of the estimated Km and kcat values, respectively, are within the experimentally reported ranges. 
These levels of agreement, in overall, exceed the previous effort [5], despite the significantly 
increased scope of the model and coverage of less studied pathways. The average relative error of k-
ecoli457 predictions for the yield of 16 bioproducts in 140 designed strains is 0.1, while 
stoichiometric model based techniques such as flux balance analysis (FBA) or minimization of 
metabolic adjustment (MOMA) yield corresponding relative errors of 1.05 and 1.19, respectively.  

This modeling effort describes a stepwise procedure for construction of genome-scale kinetic models 
with robust parameterization consistent with multiple sets of omics information for E. coli and 
provides guidelines for developing genome-scale kinetic models for other well-studied organisms.    
 
The work was supported by the genomic science grant from Department of Energy, USA (grant# 
DE-SC0012377). 
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Figure 1 (a) A pictorial representation of the constructed kinetic model of E. coli metabolism. Red, brown and 
green marks denote the knockout mutants grown aerobically on glucose, anaerobically on glucose and 
aerobically on pyruvate, respectively, with flux data for the reactions shown in blue. (b) Sub-system 
classification of reactions in the constructed kinetic model. (c) Sub-system classification of the integrated 
regulatory interactions. Blue bars denote the content of the core model [5] while red denotes the additional 
reactions/regulations included in k-ecoli457. 
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