Title: Intron-retained splice variants of the VND6 and SND1 transcription factors are dominant negatives that cross-regulate VND6 and SND1 members in *Populus trichocarpa*.

Ying-Chung Lin1,*, Hao Chen,2 Quanzi Li,1,2 Rui Shi,1 Sermsawat Tunlaya-Anukit,1 Peng Shuai,1,3 Wei Li,1,4 Huiyu Li,1,4 Ying-Hsuan Sun,5 Ronald R. Sederoff,1 and Vincent L. Chiang1

1 Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
2 State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
3 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
4 State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
5 Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan

Vascular-Related NAC-Domain 6 (VND6) is a key transcription factor (TF) involved in xylem and secondary cell wall differentiation. We discovered a splice variant of PtrVND6, called PtrVND6-C1IR, which is a dominant negative regulator of full-size PtrVND6 members. PtrVND6-C1IR lacks a transactivation domain and DNA binding ability, and can be translocated from the cytosol into the nucleus as a heterodimeric partner with any full-size PtrVND6 member. The formation of heterodimers between PtrVND6-C1IR and the full-size PtrVND6 disrupts the function of the full-size PtrVND6, thereby repressing transcription of PtrVND6 direct targets in its network. Secondary Wall-Associated NAC Domain 1 (SND1) also affects secondary cell wall biosynthesis. We previously demonstrated that the splice variant of PtrSND1-A2, PtrSND1-A2IR, can inhibit the PtrSND1 transcription network through the same mechanism. Using laser capture microdissection, we found that PtrVND-6C1IR, PtrSND1-A2IR, and all full-size PtrVND6 and PtrSND1 are expressed in both fiber and vessel cells. We further discovered that either PtrVND6-C1IR or PtrSND1-A2IR can inhibit both PtrVND6 and PtrSND1 transcription by the same mechanism. The cross-regulation between the PtrSND1 and PtrVND6 families through their splice variants suggests a general mechanism for the function of xylem specific NAC TFs controlling wood formation.