Project Goals: The KBase project aims to provide the capabilities needed to address the grand challenge of systems biology: to predict and ultimately design biological function. KBase enables users to collaboratively integrate the array of heterogeneous datasets, analysis tools and workflows needed to achieve a predictive understanding of biological systems. It incorporates functional genomic and metagenomic data for thousands of organisms, and diverse tools for (meta)genomic assembly, annotation, network inference and modeling, allowing researchers to combine diverse lines of evidence to create increasingly accurate models of the physiology and community dynamics of microbes and plants. KBase will soon allow models to be compared to observations and dynamically revised. A new prototype Narrative interface lets users create a reproducible record of the data, computational steps and thought process leading from hypothesis to result in the form of interactive publications.

KBase provides a variety of user experiences targeted to meet the needs of a diverse user base in the systems biology community. A rich programmatic API is provided in wide variety of languages for maximum performance and flexibility for computationally advanced users. The graphical Narrative interface provides an intuitive visual experience to facilitate hands-on interactive systems biology. Between these is the command line interface, providing a powerful but simple command-driven interface capable of high-throughput interaction with KBase tools and data. The online IRIS web application (http://iris.kbase.us) permits users to run commands in KBase from any computer with web access without installing any local software. It offers a wide variety of online tutorials, scripting, and data visualization features. The installable KBase client for Mac and Ubuntu Linux enables users to run KBase commands from a shell on their own computers, supporting seamless integration with locally installed data and tools.
The installable client also includes API libraries in numerous programming languages (e.g., Java, JavaScript, Perl, Python, JSON RPC), enabling users to program directly against the KBase API from their own computers and workstations. In this way, the existing computational infrastructure in any academic lab can seamlessly integrate KBase tools and data into local data analysis pipelines.

The KBase command line environment now offers a powerful suite of over 800 distinct commands that encompass genome assembly, annotation, metabolic modeling, expression data analysis, phenotype analysis, and GWAS. Since the initial release in February 2013, the KBase command line environments have collectively been applied by over 300 unique users to: (i) annotate or import over 34K genomes, (ii) construct over 40K metabolic models, and (iii) run over 110K FBA simulations. In this poster, we will highlight all command-line clients and tools available in KBase, with example workflows for genome assembly, annotation, metabolic modeling, and phenotype reconciliation.

*KBase is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.*