159. The DOE Systems Biology Knowledgebase: Plant Science Domain

Doreen Ware^{1,2*} (ware@cshl.edu), David Weston³, Jason Baumohl⁴, Aaron Best⁵, Jared Bischof⁶, Ben Bowen⁴, Tom Brettin⁶, Tom Brown⁶, Shane Canon⁴, Stephen Chan⁴, John- Marc Chandonia⁴, Dylan Chivian⁴, Ric Colasanti⁶, Neal Conrad⁶, Brian Davison⁴, Matt DeJongh⁵, Paramvir Dehal⁴, Narayan Desai⁶, Scott Devoid⁶, Terry Disz⁶, Meghan Drake³, Janaka Edirisinghe⁶, Gang Fang⁷, José Pedro Lopes Faria⁶, Mark Gerstein⁷, Elizabeth M. Glass⁶, Annette Greiner⁴, Dan Gunter⁴, James Gurtowski², Nomi Harris⁴, Travis Harrison⁶, Fei He¹, Matt Henderson⁴, Chris Henry⁶, Adina Howe⁶, Marcin Joachimiak⁴, Kevin Keegan⁶, Keith Keller⁴, Guruprasad Kora³, Sunita Kumari², Miriam Land³, Folker Meyer⁶, Steve Moulton³, Pavel Novichkov⁴, Taeyun Oh⁸, Gary Olsen⁹, Bob Olson⁵, Dan Olson⁵, Ross Overbeek⁵, Tobias Paczian⁵, Bruce Parrello⁵, Shiran Pasternak², Sarah Poon⁴, Gavin Price⁴, Srivdya Ramakrishnan², Priya Ranjan³, Bill Riehl⁴, Pamela Ronald⁸, Michael Schatz², Lynn Schriml¹⁰, Sam Seaver⁶, Michael W. Sneddon⁴, Roman Sutormin⁴, Mustafa Syed³, James Thomason², Nathan Tintle⁵, Will Trimble⁶, Daifeng Wang⁷, Andreas Wilke⁶, Fangfang Xia⁶, Shinjae Yoo¹, Dantong Yu¹, **Robert Cottingham³**, **Sergei**

¹Brookhaven National Laboratory, Upton, NY, ²Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, ³Oak Ridge National Laboratory, Oak Ridge, TN, ⁴Lawrence Berkeley National Laboratory, Berkeley, CA, ⁵Hope College, Holland, MI, ⁶Argonne National Laboratory, Argonne, IL, ⁷ Yale University, New Haven, CT, ⁸University of California, Davis, CA, ⁹ University of Illinois at Champaign-Urbana, Champaign, IL, ¹⁰University of Maryland, College Park, MD

http://kbase.us

Project Goals: The KBase project aims to provide the capabilities needed to address the grand challenge of systems biology: to predict and ultimately design biological function. KBase enables users to collaboratively integrate the array of heterogeneous datasets, analysis tools and workflows needed to achieve a predictive understanding of biological systems. It incorporates functional genomic and metagenomic data for thousands of organisms, and diverse tools for (meta) genomic assembly, annotation, network inference and modeling, allowing researchers to combine diverse lines of evidence to create increasingly accurate models of the physiology and community dynamics of microbes and plants. KBase will soon allow models to be compared to observations and dynamically revised. A new prototype Narrative interface lets users create a reproducible record of the data, computational steps and thought process leading from hypothesis to result in the form of interactive publications.

DOE Systems Biology Knowledgebase (KBase) has two central goals. The scientific goal is to produce predictive models, reference datasets, and analytical tools and to demonstrate their utility in DOE biological research relating to bioenergy, carbon cycle, and the study of subsurface microbial communities. The operational goal is to create the integrated software and hardware infrastructure needed to support the creation, maintenance, and use of predictive models and methods.

The plant team is currently focused on reconstruction and modeling of genotype-to- phenotype relationships in plant species relevant for DOE mission. Our workflows accessible via narrative and command line interfaces provide interactive, data-driven analysis and exploration across multiple experiments and diverse data-types. KBase allows our users to process next generation sequencing data to identify novel genomic variation and to quantify genome-wide expression levels. Users can process

expression data to calculate co-expression networks and to identify and annotate functional modules within those networks. Furthermore, we provide computational tools to carry out Genome-Wide Association analysis to identify SNPs and candidate genes significantly correlated with plant phenotypes. Predicted genotype-to-phenotype relationships can be validated by a variety of public and user-generated networks metabolic models in KBase.

KBase is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.