Contents

Welcome to Genomics:GTL Workshop III

Genomics:GTL Program Projects

Harvard Medical School

1 Metabolic Network Modeling of Prochlorococcus marinus ... 3
 George M. Church* (g1m1c1@arep.med.harvard.edu), Xiaoxia Lin, Daniel Segrè, Aaron Brandes, and Jeremy Zucker

2 Quantitative Proteomics of Prochlorococcus marinus ... 4
 Kyriacos C. Leptos* (leptos@fas.harvard.edu), Jacob D. Jaffe, Eric Zinser, Debbie Lindell, Sallie W. Chisholm, and George M. Church

3 Genome Sequencing from Single Cells with Ploning .. 5
 Kun Zhang* (kzhang@genetics.med.harvard.edu), Adam C. Martiny, Nikkos B. Reppas, Sallie W. Chisholm, and George M. Church

Lawrence Berkeley National Laboratory

4 VIMSS Computational Microbiology Core Research on Comparative and Functional Genomics .. 6
 Adam Arkin* (aparkin@lbl.gov), Eric Alm, Inna Dubchak, Mikhail Gelfand, Katherine Huang, Vijaya Natarajan, Morgan Price, and Yue Wang

5 The Virtual Institute of Microbial Stress and Survival (VIMSS): Deduction of Stress Response Pathways in Metal/Radionuclide Reducing Microbes ... 8
 Carl Abulencia, Eric Alm, Gary Andersen, Adam Arkin* (APArkin@lbl.gov), Kelly Bender, Sharon Borglin, Eoin Brodie, Swapnil Chhabra, Steve van Dien, Inna Dubchak, Matthew Fields, Sara Gaucher, Jil Geller, Masood Hadi, Terry Hazen, Qiang He, Zhili He, Hoi-Ying Holman, Katherine Huang, Rick Huang, Janet Jacobsen, Dominique Joyner, Jay Keasling, Keith Keller, Martin Keller, Aindrila Mukhopadhyay, Morgan Price, Joseph A. Ringbauer, Jr., Anup Singh, David Stahl, Sergey Stolyar, Jun Sun, Dorothea Thompson, Christopher Walker, Judy Wall, Jing Wei, Denise Wolf, Denise Wyborski, Huei-che Yen, Grant Zane, Jizhong Zhou, and Beto Zuniga

* Presenting author
<table>
<thead>
<tr>
<th>Poster</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>VIMSS Applied Environmental Microbiology Core Research on Stress Response Pathways in Metal-Reducers</td>
</tr>
<tr>
<td></td>
<td>Terry C. Hazen* (tchazen@lbl.gov), Carl Abulencia, Gary Andersen, Sharon Borglin, Eoin Brodie, Steve van Dien, Matthew Fields, Jill Geller, Hoi-Ying Holman, Rick Huang, Janet Jacobsen, Dominique Joyner, Martin Keller, Aindrila Mukhopadhyay, David Stahl, Sergey Stolyar, Jun Sun, Dorothea Thompson, Judy Wall, Denise Wyborski, Huei-che Yen, Grant Zane, Jizhong Zhou, and Beto Zuniga</td>
</tr>
<tr>
<td>7</td>
<td>VIMSS Functional Genomics Core: Analysis of Stress Response Pathways in Metal-Reducing Bacteria</td>
</tr>
<tr>
<td></td>
<td>Aindrila Mukhopadhyay, Steven Brown, Swapnil Chhabra, Brett Emo, Weimin Gao, Sara Gaucher, Masood Hadi, Qiang He, Zhili He, Ting Li, Yongqing Liu, Alyssa Redding, Joseph Ringbauer, Jr., Dawn Stanek, Jun Sun, Lianhong Sun, Jing Wei, Liyou Wu, Huei-Che Yen, Wen Yu, Grant Zane, Matthew Fields, Martin Keller (mkeller@diversa.com), Anup Singh (aksingh@sandia.gov), Dorothea Thompson, Judy Wall (wallj@missouri.edu), Jizhong Zhou (zhouj@ornl.gov), and Jay Keasling* (keasling@socrates.berkeley.edu)</td>
</tr>
</tbody>
</table>

Oak Ridge National Laboratory and Pacific Northwest National Laboratory

<table>
<thead>
<tr>
<th>Poster</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Center for Molecular and Cellular Systems: High-Throughput Identification and Characterization of Protein Complexes</td>
</tr>
<tr>
<td></td>
<td>Michelle Buchanan, Frank Larimer, Steven Wiley, Steven Kennel, Dale Pelletier, Brian Hooker, Gregory Hurst, Robert Hettich, Hayes McDonald* (mcdonaldwh@ornl.gov), Vladimir Kery, Mitchel Doktycz, Jenny Morrell, Bob Foote, Denise Schmoyer, Manesh Shah, and Bill Cannon</td>
</tr>
<tr>
<td>9</td>
<td>High-Throughput Analysis of Protein Complexes in the Center for Molecular and Cellular Systems</td>
</tr>
<tr>
<td>10</td>
<td>Investigating Gas Phase Dissociation Pathways of Crosslinked Peptides: Application to Protein Complex Determination</td>
</tr>
<tr>
<td></td>
<td>Sara P. Gaucher* (spgauch@sandia.gov), Masood Z. Hadi, and Malin M. Young</td>
</tr>
<tr>
<td>11</td>
<td>Center for Molecular and Cellular Systems: Statistical Screens for Datasets from High-Throughput Protein Pull-Down Assays</td>
</tr>
<tr>
<td></td>
<td>Frank W. Larimer* (larimerfw@ornl.gov), Kenneth K. Anderson, Deanna L. Auberry, Don S. Daly, Vladimir Kery, Denise D. Schmoyer, Manesh B. Shah, and Amanda M. White</td>
</tr>
<tr>
<td>12</td>
<td>Center for Molecular and Cellular Systems: Analysis and Visualization of Data from a High-Throughput Protein Complex Identification Pipeline Using Modular and Automated Tools</td>
</tr>
<tr>
<td></td>
<td>W. Hayes McDonald (mcdonaldwh@ornl.gov), Joshua N. Adkins, Deanna L. Auberry, Kenneth J. Auberry, Gregory B. Hurst, Vladimir Kery, Frank W. Larimer, Manesh B. Shah, Denise D. Schmoyer, Eric F. Strittmatter, and Dave L. Wabb</td>
</tr>
</tbody>
</table>

* Presenting author
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Carbon Sequestration in Synechococcus: A Computational Biology Approach to Relate the Genome to Ecosystem Response</td>
<td>Grant S. Heffelfinger* (gsheffe@sandia.gov)</td>
</tr>
<tr>
<td>14</td>
<td>Integrating Heterogeneous Databases and Tools for High Throughput Microbial Analysis</td>
<td>Nagiza Samatva* (samatovan@ornl.gov), Al Geist, Praveen Chandramohan, and Ramya Krishnamurthy</td>
</tr>
<tr>
<td>15</td>
<td>Toward Comprehensive Analysis of MS/MS Data Flows</td>
<td>Andrey Gorin* (agor@ornl.gov), Nikita D. Arnold, Robert M. Day, and Tema Fridman</td>
</tr>
<tr>
<td>16</td>
<td>The Transcriptome of a Marine Cyanobacterium—Analysis Through Whole Genome Microarray Analyses</td>
<td>Brian Palenik* (bpalenik@ucsd.edu), Ian Paulsen* (ipaulsen@tigr.org), Bianca Brahamsha, Rob Herman, Katherine Kang, Ed Thomas, Jeri Timlin, and Dave Haaland</td>
</tr>
<tr>
<td>17</td>
<td>DEB: A Data Entry and Browsing Tool for Entering and Linking Synechococcus sp. WH8102 Whole Genome Microarray Metadata from Multiple Data Sources</td>
<td>Arie Shoshani* (Shoshani@lbl.gov), Victor Havin, Vijaya Natarajan, Tony Martino, Jerilyn A. Timlin, Katherine Kang, Ian Paulsen, Brian Palenik, and Thomas Naughton</td>
</tr>
<tr>
<td>18</td>
<td>Microarray Analysis using VxInsight and PAM</td>
<td>George S. Davidson* (GSDAVID@sandia.gov), David Hanson, Shawn Martin, Margaret Werner-Washburne, and Mark D. Rintoul</td>
</tr>
<tr>
<td>19</td>
<td>Mapping of Biological Pathways and Networks across Microbial Genomes</td>
<td>F. Mao, V. Olman, Z. Su, P. Dam, and Ying Xu* (xyn@bmb.uga.edu)</td>
</tr>
<tr>
<td>20</td>
<td>Proteomic Analysis of the Synechococcus WH8102 CCM with Varying CO₂ Concentrations</td>
<td>Arlene Gonzales, Yooli K. Light, Zhaoduo Zhang, Michael D. Leavell, Rajat Sapra, Tahera Iqbal, Todd W. Lane, and Anthony Martino* (martino@sandia.gov)</td>
</tr>
<tr>
<td>21</td>
<td>Predicting Protein-Protein Interactions Using Signature Products with an Application to β-Strand Ordering</td>
<td>Shawn Martin (smartin@sandia.gov), W. Michael Brown, Charlie Strauss, Mark D. Rintoul*, and Jean-Loup Faulon</td>
</tr>
<tr>
<td>22</td>
<td>In Vivo Observation of the Native Pigments in Synechocystis sp. PCC 6803 Using a New Hyperspectral Confocal Microscope</td>
<td>Michael B. Sinclair* (mbsincl@sandia.gov), Jerilyn A. Timlin, David M. Haaland, Sawsan Hamad, and Wim F.J. Vermaas</td>
</tr>
</tbody>
</table>
Connecting Temperature and Metabolic Rate to Population Growth Rates in Marine Picophytoplankton

Andrea Belgrano* (ab@ncgr.org) and Damian Gessler

Deciphering Response Networks in Microbial Genomes through Data Mining and Computational Modeling

Z. Su, P. Dam, V. Olman, F. Mao, H. Wu, X. Chen, T. Jiang, B. Palenik, and Ying Xu* (xyn@bmb.uga.edu)

BiLab – A New Tool that Combines the Ease-of-Use of MatLab and the Power of Multiple Computational Biology Libraries

Al Geist* (gst@ornl.gov) and David Jung

Microbial Cell Modeling via Reacting/Diffusing Particles

Steve Plimpton* (sjplimp@sandia.gov) and Alex Slepoy

Modeling RuBisCO's Gating Mechanism Using Targeted Molecular Dynamics

Paul S. Crozier (pscrozi@sandia.gov), Steven J. Plimpton, Mark D. Rintoul*, Christian Burisch, and Jürgen Schlitter

Selection of Ligands by Panning of Phage Display Peptide Libraries Reveals Potential Partners for TPR Domain and rbcS in Synechococcus WH8102

Zhaoduo Zhang* (zzhang@sandia.gov), Arlene D. Gonzales, Todd W. Lane, and Anthony Martino

Progress Toward Genome-Scale Monitoring of In Situ Gene Expression During Uranium Bioremediation and Electricity Harvesting

Dawn Holmes* (dholmes@microbio.umass.edu), Kelly Nevin, Regina O’Neil, Zhenya Shelbolina, Martin Lanthier, Jonathan Kaye, Brad Postier, and Derek Lovley

Integrating Phenotypic and Expression Data to Characterize Metabolism in G. sulfurreducens

R. Mahadevan, C. H. Schilling, D. Segura, B. Yan, J. Krushkal, and D. R. Lovley* (dlovley@microbio.umass.edu)

Novel Regulatory Systems and Adaption of Some Well-Known Systems Controlling Respiration, Growth, and Chemotaxis of Geobacter Species

Maddalena Coppi* (mcoppi@microbio.umass.edu), Byoung-Chan Kim, Laurie DiDonato, Julia Krushkal, Bin Yan, Richard Glaven, Regina O’Neil, Suphan Bakkal, Allen Tsang, Hoa Tran, Abraham Esteve-Nunez, Cinthia Nunez, Ching Leang, Kuk-Jeong Chin, Barbara Methe, Robert Weis, Pablo Pomposiello, Kelly Nevin, and Derek Lovley

* Presenting author

University of Massachusetts, Amherst
Nanowires, Capacitors, and Other Novel Electron Transfer Mechanisms in *Geobacter* Species Elucidated from Genome-Scale Investigations

Gemma Reguera* (greguera@microbio.umass.edu), Teena Mehta, Dawn E. Holmes, Abraham Esteve-Núñez, Jessica Butler, Barbara Methe, Kelly Nevin, Swades K. Chaudhuri, Richard Glaven, Tunde Mester, Raymond DiDonato, Kevin McCarthy, Mark T. Tuominen, and Derek Lovley

Continued Progress in the use of Microarray Technology to Predict Gene Regulation and Function in *Geobacter sulfurreducens*

Barbara Methé*(bmethe@tigr.org), Jennifer Webster, Kelly Nevin, and Derek Lovley

Presenting author
Reverse-Engineering Microbial Networks in *Escherichia coli* and *Shewanella oneidensis* MR-1 via Large-Scale Perturbation Studies

Comparative Analysis of Gene Expression Profiles of *Shewanella oneidensis* MR-1 Following Exposure to Ionizing Radiation and Ultraviolet Radiation

Xiaoyun Qiu* (qiuxiaoy@msu.edu), George Sundin, Michael J. Daly, Alexander Vasilenko, Marina V. Omelchenko, Jizhong Zhou, Liyou Wu, Mary S. Lipton, and James M. Tiedje

The Microbial Proteome Project: A Database of Microbial Protein Expression in the Context of Genome Analysis

Carol S. Giometti* (csgiometti@anl.gov), Gyorgy Babnigg, Sandra L. Tollaksen, Tripti Khare, Angela Ahrendt, Wenhong Zhu, Derek R. Lovley, James K. Fredrickson, and John R. Yates III

J. Craig Venter Institute

Estimation of the Minimal Mycoplasma Gene Set Using Global Transposon Mutagenesis and Comparative Genomics

John I. Glass* (JGlass@venterinstitute.org), Nina Alperovich, Nacyra Assad-Garcia, Shibu Yooseph, Mahir Maruf, Carole Lartigue, Cynthia Pfannkoch, Clyde A. Hutchison III, Hamilton O. Smith, and J. Craig Venter

Progress toward a Synthetic Cellular Genome

Hamilton O. Smith* (hsmith@venterinstitute.org), Cynthia Pfannkoch, Holly A. Baden-Tillson, Clyde A. Hutchison III, and J. Craig Venter

Development of a *Deinococcus radiodurans* Homologous Recombination System

Sanjay Vashee*, Ray-Yuan Chuang* (RChuang@venterinstitute.org), Christian Barnes, Hamilton O. Smith, and J. Craig Venter

Development of a Novel Recombinant Cyanobacterial System for Hydrogen Production from Water

Qing Xu, Shibu Yooseph, Hamilton O. Smith, and J. Craig Venter (jcventer@tcaag.org)

Biotechnology For the Production of Ethanol and Butanol from Cellulose

Prabha P. Iyer* (piyer@venterinstitute.org), Hamilton O. Smith, and J. Craig Venter
Communicating Genomics: GTL

(mansfieldbk@ornl.gov)

SimPheny™: A Computational Infrastructure for Systems Biology

Christophe H. Schilling* (cschilling@genomatica.com), Sean Kane, Martin Roth, Jin Ruan, Kurt Stadsklev, Rajendra Thakar, Evelyn Travnik, Steve van Dien, and Sharon Wiback

Hybrid Bacterial Cell Models: Linking Genomics to Physiological Response

Jordan C. Atlas* (jca33@cornell.edu), Mariajose Castellanos, Anjali Dhiman, Bruce Church, and Michael L. Shuler

Identification of the Most Probable Biological Network Using Model Discrimination Analysis

Andrea L. Knorr and Ranjan Srivastava* (srivasta@engr.uconn.edu)

Rhodopseudomonas palustris Regulons Detected by a Cross-Species Analysis of the α-Proteobacteria

Sean Conlan* (sconlan@wadsworth.org), Charles E. Lawrence, and Lee Ann McCue

Exploring Evolutionary Space

Timothy G. Lilburn* (tlilburn@atcc.org), Yun Bai, Yuan Zhang, James R. Cole, and George M. Garrity

PhyloScan: A New Tool for Identifying Statistically Significant Transcription Factor Binding Sites by Combining Cross-Species Evidence

Lee A. Newberg*, C. Steven Carmack, Lee Ann McCue (mccue@wadsworth.org), and Charles E. Lawrence

Predicting Protein Interactions via Docking Mesh Evaluator

Roummel F. Marcia, Susan D. Lindsey, Erick A. Butzlaff, and Julie C. Mitchell* (mitchell@math.wisc.edu)

UC Merced Center for Computational Biology

Michael Colvin* (mcolvin@ucmerced.edu), Arnold Kim, and Felice Lightstone

Biomic Approach to Predictive Cell Modeling

P. J. Ortoleva* (ortoleva@indiana.edu), L. Ensman, J. Fan, K. Hubbard, A. Sayyed-Ahmad, F. Stanley, K. Tuncay, and K. Varala

* Presenting author
57 The BioWarehouse System for Integration of Bioinformatics Databases .. 78
 Tom Lee, Valerie Wagner, Yannick Pouliot, and Peter D. Karp* (pkarp@ai.sri.com)

58 Building Large Biological Dynamic Models of Shewanella oneidensis from Incomplete Data . 79
 Ravishankar R. Vallabhajosyula* (rrao@kgi.edu), Sri Paladugu, Klaus Maier, and Herbert M. Sauro

59 A Bayesian Method for Identifying Missing Enzymes in Predicted Metabolic Pathway
 Databases ... 81
 Michelle L. Green* (green@ai.sri.com) and Peter D. Karp

60 Does EcoCyc or KEGG Provide a Preferable Gold Standard for Training and Evaluation
 of Genome-Context Methods? ... 82
 Peter D. Karp* (pkarp@ai.sri.com) and Michelle L. Green

61 Towards a Physics and Systems Understanding of Ion Transport in Prokaryotes 83
 Shreedhar Natarajan, Asba Tasneem*, Sameer Varma, Lakshminarayan Iyer, L. Aravind, and Eric
 Jakobsson* (jake@ncsa.uiuc.edu)

62 OptStrain: A Computational Framework for Redesign Microbial Production Systems 84
 Priti Pharkya and Costas D. Maranas* (costas@psu.edu)

63 DEMSIM: A Discrete Event Based Mechanistic Simulation Platform for Gene Expression
 and Regulation Dynamics ... 84
 Madhukar Dasika and Costas D. Maranas* (costas@psu.edu)

64 On the Futility of Optima in Network Inferences and What Can Be Done About It 86
 Charles (Chip) E. Lawrence* (lawrence@dam.brown.edu)

Environmental Genomics

65 Whole Community Proteomics Study of an Acid Mine Drainage Biofilm Reveals Key Roles
 for “Hypothetical” Proteins in a Natural Microbial Biofilm .. 87
 Jill Banfield* (jill@eps.berkeley.edu), Rachna J. Ram, Gene W. Tyson, Eric Allen, Nathan VerBerkmoes,
 Michael P. Thelen, Brett J. Baker, Manesh Shah, Robert Hettich, and Robert C. Blake II

66 Application of High Throughput Microcapsule Culturing to Develop a Novel Genomics
 Technology Platform ... 88
 Martin Keller* (mkeller@diversa.com), Karsten Zengler, Marion Walcher, Carl Abulencia, Denise
 Wyborski, Sherman Chang, Imke Haller, Trevin Holland, Fred Brockman, Cheryl Kuske, and Susan Barns
<table>
<thead>
<tr>
<th>Page</th>
<th>Poster</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Environmental Bacterial Diversity from Communities to Genomes ... 89</td>
</tr>
<tr>
<td></td>
<td>Janelle R. Thompson*, Silvia G. Acinas, Vanja Klepac-Ceraj, Sarah Pacocha, Chanathip Pharino, Dana E. Hunt, Luisa A. Marcelino, Jennifer Benoit, Ramahi Sarma-Rupavtarm, Daniel L. Distel, and Martin F. Polz (mpolz@mit.edu)</td>
</tr>
<tr>
<td>68</td>
<td>Distribution and Variation of Prochlorococcus Genotypes Across Multiple Oceanic Habitats .. 90</td>
</tr>
<tr>
<td></td>
<td>Adam C. Martiny* (martiny@mit.edu), P. K. Amos Tai, Anne W. Thompson, and Sallie W. Chisholm</td>
</tr>
<tr>
<td>69</td>
<td>From Perturbation Analysis to the Genomic Regulatory Code: the Sea Urchin Endomesoderm GRN ... 91</td>
</tr>
<tr>
<td></td>
<td>Paola Oliveri* (poliveri@caltech.edu), Pei-Yun Lee, Takuya Minokawa, Joel Smith, Qiang Tu, Meredith Howard, David McClay, and Eric H. Davidson</td>
</tr>
<tr>
<td>70</td>
<td>Microbial Genomics</td>
</tr>
<tr>
<td>71</td>
<td>The Genome of the Ammonia Oxidizing Bacterium Nitrosomonas europaea: Iron Metabolism and Barriers to Heterotrophy ... 93</td>
</tr>
<tr>
<td></td>
<td>Xueming Wei, Neeraja Vajrala, Norman Hommes, Luis Sayavedra-Soto*, and Daniel Arp (arpd@science.oregonstate.edu)</td>
</tr>
<tr>
<td>72</td>
<td>Pelagibacter ubique: A Post-Genomic Investigation of Carbon Metabolism and Photochemistry in an Extraordinarily Abundant Oceanic Bacterium ... 95</td>
</tr>
<tr>
<td></td>
<td>Stephen J. Giovannoni* (steve.giovannoni@oregonstate.edu), Lisa Bibbs, James Tripp, Scott Givan, Jang-Cheon Cho, Martha D. Stapels, Russell Desiderio, Mercha Podar, Kevin L. Vergin, Mick Noordeweir, Michael S. Rappé, Samuel Laney, Douglas F. Barofsky, and Eric Mathur</td>
</tr>
<tr>
<td>73</td>
<td>Does the Three Dimensional Organization of the Nucleoid of the Deinococcaceae Contribute to their Ionizing Radiation Resistance? ... 96</td>
</tr>
<tr>
<td></td>
<td>J. M. Zimmerman and J. R. Battista* (jbattis@lsu.edu)</td>
</tr>
<tr>
<td>74</td>
<td>Large Scale Genomic Analysis for Understanding Hydrogen Metabolism in Chlamydomonas reinhardtii ... 97</td>
</tr>
<tr>
<td></td>
<td>Michael Seibert* (mike_seibert@nrel.gov), Arthur R. Grossman, Maria L. Ghirardi, and Matthew C. Posewitz</td>
</tr>
<tr>
<td>75</td>
<td>Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination ... 99</td>
</tr>
<tr>
<td></td>
<td>James M. Tiedje*, Sang-Hoon Kim, Christina Harzman, John Davis, Brett Phinney, Michael Ngewe, Washington Mutatu, William Broderick, David DeWitt, Joan Broderick, and Terence L. Marsh (marsht@msu.edu)</td>
</tr>
</tbody>
</table>

* Presenting author
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>An Integrative Approach to Energy, Carbon, and Redox Metabolism in the Cyanobacterium Synechocystis sp. PCC 6803</td>
<td>Wim Vermaas* (wim@asu.edu), Robert Roberson, Allison van de Meene, Bing Wang, Sawsan Hamad, Zhi Cai, Julian Whitelegge, Kym Faull, Sveta Gerdes, Andrei Osterman, and Ross Overbee</td>
</tr>
<tr>
<td>76</td>
<td>Role of Cellulose Binding Modules in Cellulose Hydrolysis</td>
<td>David B. Wilson* (dbw3@cornell.edu) and Shaolin Chen</td>
</tr>
<tr>
<td>77</td>
<td>Three Prochlorococcus Cyanophage Genomes: Signature Features and Ecological Interpretation</td>
<td>Matthew B. Sullivan* (mbsulli@mit.edu), Maureen Coleman, Peter Weigele, Forest Rohwer, and Sallie W. Chisholm</td>
</tr>
<tr>
<td>78</td>
<td>The Alternative Sigma Factor RpoN Regulon of Rhodopseudomonas palustris</td>
<td>Yasuhiro Oda* (yasuhiro-oda@uiowa.edu), Sudip K. Samanta, Frank W. Larimer, and Caroline S. Harwood</td>
</tr>
<tr>
<td>79</td>
<td>Integrative Control of Key Metabolic Processes in Rhodopseudomonas palustris for the Enhancement of Carbon Sequestration and Biohydrogen Production</td>
<td>F. Robert Tabita* (Tabita.1@osu.edu), Janet L. Gibson, Caroline S. Harwood, Frank Larimer, J. Thomas Beatty, James C. Liao, and Jizhong (Joe) Zhou</td>
</tr>
<tr>
<td>80</td>
<td>Whole Genome Transcriptional Analysis of Toxic Metal Stresses in Caulobacter crescentus</td>
<td>Gary L. Andersen* (GLAndersen@lbl.gov), Ping Hu, Eoin L. Brodie, and Harley H. McAdams</td>
</tr>
<tr>
<td>81</td>
<td>Systematic Analysis of Two-Component Signal Transduction Systems Regulating Cell Cycle Progression in Caulobacter crescentus</td>
<td>Michael Laub* (Laub@CGR.Harvard.edu)</td>
</tr>
<tr>
<td>82</td>
<td>The U.S. DOE Joint Genome Institute Microbial Program</td>
<td>David Bruce* (dbruce@lanl.gov), Alla Lapidus, Patrick Chain, Jeremy Schmutz, Frank Larimer, Nikos Kyprides, Paul Gilna, Eddy Rubin and Paul Richardson</td>
</tr>
<tr>
<td>83</td>
<td>Identification of Genes that are Required for Recycling Reducing Power during Photosynthetic Growth</td>
<td>Christine L. Tavano, Angela M. Podevels, and Timothy J. Donohue* (tdonohue@bact.wisc.edu)</td>
</tr>
<tr>
<td>84</td>
<td>A Tightly-Regulated Oscillatory Circuit Formed by Conserved Master Regulator Proteins Controls the Caulobacter Cell Cycle</td>
<td>Harley McAdams* (hmcdams@stanford.edu) and Lucy Shapiro</td>
</tr>
<tr>
<td>85</td>
<td>Dynamics and Control of Biofilms of the Oligotrophic Bacterium Caulobacter crescentus</td>
<td>Alfred M. Spormann (spormann@stanford.edu) and Plamena Entcheva-Dimitrov</td>
</tr>
</tbody>
</table>
Technology Development and Use

Imaging, Molecular, and Cellular Analysis

89 Probing Single Microbial Proteins and Multi-Protein Complexes with Bioconjugated Quantum Dots
Matthew T. Cottrell and David L. Kirchman* (kirchman@cms.udel.edu)

90 Single-Molecule Imaging of Macromolecular Dynamics in a Cell
Gordon A. Anderson* (gordon@pnl.gov), James E. Bruce, Xiaoting Tang, Gerhard Munske, and Nikola Tolic

91 Developing a High Resolution Method for Protein Localization in Whole Bacterium
Huilin Li* (hli@bnl.gov) and James Hainfeld (hainfeld@bnl.gov)

92 Novel Vibrational Nanoprobes for Microbiology at the Single Cell Level
Thomas Huser* (huser1@llnl.gov), Chad E. Talley, James W. Chan, Heiko Winhold, Ted Laurence, Anthony Esposito, Christopher W. Hollars, Christine A. Hara, Allen T. Christian, Michele H. Corzett, Rod Balhorn, and Stephen M. Lane

93 Instrumented Cell for Characterization of Mammalian and Microbial Cells
Jane Bearinger* (bearinger1@llnl.gov), Graham Bench, Jackie Crawford, Lawrence Dugan, Amy Hiddessen, Angela Hinz, Thomas Huser, Robin Miles, Magnus Palmblad, Chad Talley, Elizabeth Wheeler, and Allen Christian

94 Chemical Imaging of Biological Materials by NanoSIMS
Peter K. Weber* (weber21@llnl.gov), Ian D. Hutcheon, Radu Popa, and Ken Nealson

* Presenting author
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s) and Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>Direct Determination of Affinity in Individual Protein-Protein Complexes in Mono and Multivalent Configurations Using Dynamic Force Spectroscopy</td>
</tr>
<tr>
<td>126</td>
<td>Electron Tomography of Intact and Sectioned Microbial Cells</td>
</tr>
<tr>
<td>127</td>
<td>Probing the High-Resolution Architecture and Environmental Dynamics of Microbial Surfaces by in vitro Atomic Force Microscopy</td>
</tr>
<tr>
<td>128</td>
<td>Real-Time Gene Expression Profiling of Single Live Cells of Shewanella oneidensis</td>
</tr>
<tr>
<td>130</td>
<td>High Throughput Fermentation and Cell Culture Device</td>
</tr>
<tr>
<td>132</td>
<td>Immobilized Enzymes in Nanoporous Materials Exhibit Enhanced Stability and Activity</td>
</tr>
</tbody>
</table>

Protein Production and Molecular Tags

<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s) and Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>Towards High Throughput Selection of Binding Ligands: Using Flow Cytometry</td>
</tr>
<tr>
<td>134</td>
<td>Efficient Chemical Methods for the Total Synthesis of Small Proteins: The First Crystallographic Structure of a Protein Diastereomer, [D-Gln35]-ubiquitin</td>
</tr>
<tr>
<td>135</td>
<td>Development and Application of Multipurpose Affinity Probes to Isolate Intact Protein Complexes Associated with Metal Reduction from Shewanella oneidensis MR-1</td>
</tr>
<tr>
<td>137</td>
<td>A Combined Informatics and Experimental Strategy for Improving Protein Expression</td>
</tr>
<tr>
<td>138</td>
<td>High-Throughput Production and Analyses of Purified Proteins</td>
</tr>
</tbody>
</table>
Poster

106 Development of Genome-Scale Expression Methods ... 139
Sarah Fey, Elizabeth Landorf, Yuri Londer, Terese Peppler, and Frank Collart* (fcollart@anl.gov)

107 Plate-Based Methods for Expression of Cytoplasmic Proteins from Shewanella oneidensis 140
Elizabeth Landorf, Terese Peppler, Sarah Fey, Alexander Iakounine, Eugene Kolker, and Frank Collart*
(fcollart@anl.gov)

108 Generating scFv and Protein Scaffolds to Protein Targets .. 141
Brian K. Kay* (bkay@anl.gov), Michael Scholle, Ushma Kriplani, John Kehoe, and Frank Collart

109 Cell Free Approaches for Protein Production .. 141
Gerald W. Becker*, Pavel Shiyanov, Yifei Wu, Sarah Fey, Elizabeth Landorf, Terese Peppler, and
Frank Collart (fcollart@anl.gov)

110 Rapid Synthesis of Peptidic and Peptidomimetic Ligands for High-Throughput Protein
Purification and Labeling .. 142
Jeffrey B.-H. Tok* (tok2@llnl.gov), Priscilla Chan, David Smithson, Ted Tarasow, and Rod Balhorn

Proteomics and Metabolomics

111 Development and Application of New Technologies for Comprehensive and Quantitative
High Throughput Microbial Proteomics .. 143
Richard D. Smith* (rds@pnl.gov), Mary S. Lipton, James K. Fredrickson, Matthew Monroe, Eric Livesay,
Konstantinos Petritis, Joshua Adkins, Gordon A. Anderson, Kim Hixon, Ruihua Fang, Rui Zhao,
Ronald J. Moore, and Yufeng Shen

112 Characterization of Rhodobacter sphaeroides by High Resolution Proteomic Measurements . 144
Mary S. Lipton* (Mary.Lipton@pnl.gov), Timothy Donohue* (tdonohue@bact.wisc.edu), Samuel
Kaplan* (Samuel.Kaplan@uth.tmc.edu), Stephen Callister, Matthew E. Monroe, Margie F. Romine,
Ruihua Fang, Carrie D. Goddard, Nikola Tolic, Gordon A. Anderson, Richard D. Smith, Jim K. Fredrickson,
Miguel Dominguez, Christine Tavano, Xiaihua Zeng, and Jung Hyeob Roh

113 Quantitative Metalloproteomics .. 146
Patrick G. Grant* (pggrant@llnl.gov), Sharon Shields, Magnus Palmblad, and Graham Bench

114 New Technologies for Metabolomics ... 147
Jay D. Keasling* (jdkeasling@lbl.gov), Carolyn Bertozzi, Julie Leary, Michael Marletta, and David
Wemmer

115 Characterization of Metal Reducing Microbial Systems by High Resolution Proteomic
Measurements ... 148
Mary S. Lipton* (Mary.Lipton@pnl.gov), Ruihua Fang, Dwayne A. Elias, Margie F. Romine, Alex Beliaev,
Matthew E. Monroe, Kim K. Hixon, Yuri A. Gorby, Ljiljana Pasa-Tolic, Heather M. Mottaz,
Gordon A. Anderson, Richard D. Smith, Jim K. Fredrickson, Derek Lovley, and Yanhuai R. Ding

* Presenting author
Protein Complexes and Pathways ... 150
David Eisenberg* (david@miuclu.edu), Peter Bowers, Michael Strong, Huiying Li, Lukasz Salwinski, Robert Riley, Richard Llwellyn, Einat Sprinzak, Debnath Pal, and Todd Yeates

Metabolomic Functional Analysis of Bacterial Genomes .. 151
Clifford J. Unkefer* (cju@lanl.gov)

Dyneomics: Mass Annotation of Protein Dynamics through Molecular Dynamics Simulations of Fold-Space Representatives .. 152
David A. C. Beck* (dacb@u.washington.edu), Ryan Day, Kathryn A. Scott, R. Dustin Schaeffer, Robert E. Steward, Amanda L. Jonsson, Darwin O. V. Alonso, and Valerie Daggett

Ethical, Legal, and Societal Issues

The DNA Files® .. 153
Bari Scott* (bariscot@aol.com)

Science Literacy Training for Public Radio Journalists .. 155
Bari Scott* (bariscot@aol.com)

Appendix 1: Attendees 157

Appendix 2: Web Sites 167

Author Index 169

Institution Index 177
Welcome to the third Genomics:GTL Contractor-Grantee workshop. GTL continues to grow—scientifically, in DOE relevance, and as a program that needs all your diverse scientific, technical, and intellectual efforts to make it a success. GTL is attracting broad and enthusiastic interest and support from scientists at universities, national laboratories, and industry; colleagues at other federal agencies; Department of Energy leadership; and Congress.

GTL’s challenge to the scientific community is to further develop and use a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems in individual microbes and microbial communities. GTL’s prominent position at the interface of the physical, computational, and biological sciences is both a strength and a challenge. Microbes remain GTL’s principal biological focus. In the complex “simplicity” of microbes, we find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

This year brings two important milestones for GTL. First is the development of a roadmap that will help guide and justify the GTL program to a broad audience of scientists, policymakers, and the public. In the coming weeks we will be calling on many of you to provide critical review of this important document. Second is an important step forward in developing GTL user facilities: we are beginning the process of engineering and designing the Facility for Production and Characterization of Proteins and Molecular Tags.

GTL workshops are high-energy events that provide an opportunity for all of us to discuss, listen, and learn about exciting new advances in science; identify research needs and opportunities; form research partnerships; and share the excitement of this program with the broader scientific community. We look forward to a stimulating and productive meeting and offer our sincere thanks to all the organizers and to you, the scientists, whose vision and efforts will help us all to realize the promise of this exciting venture.

Ari Patrinos
Associate Director of Science for Biological and Environmental Research
Office of Science
U.S. Department of Energy
ari.patrinos@science.doe.gov

Ed Oliver
Associate Director of Science for Advanced Scientific Computing Research
Office of Science
U.S. Department of Energy
ed.oliver@science.doe.gov