Glycolysis Balances Enzyme Efficiency and Metabolic Adaptivity

Junyoung O. Park^{1,2*} (jopark@princeton.edu), Monica H. Wei,³ Lukas B. Tanner,¹ Daniel Amador-Noguez,¹ Sophia Hsin-Jung Li,⁴ and **Joshua D. Rabinowitz**^{1,3}

¹Lewis-Sigler Institute for Integrative Genomics; ²Department of Chemical and Biological Engineering; ³Department of Chemistry; and ⁴Department of Molecular Biology, Princeton University, Princeton, NJ

Project Goal: To track thermodynamic changes in glycolysis using isotope tracers

Rapid glycolysis during slow growth is a desirable feature for industrial biofuel production. In practice, however, glycolysis tends to slow down together with growth. Here we set out to develop and apply, in fast and slow-growing cells, isotope tracer methods for measuring the Gibbs energy of reaction (ΔG) of glycolytic reactions.

To this end, we selected glucose tracers harboring either 2H at the fifth carbon, $[5\text{-}^2H_1]$, or ^{13}C at the first two carbons, $[1,2\text{-}^{13}C_2]$. These tracers generate labeling patterns across glycolytic intermediates that depend on the pathway's forward-to-backward flux ratio (J^+/J^-) and therefore $\Delta G = -RT \ln(J^+/J^-)$. Quantitative methods for integrating data from the two tracers to reveal reaction thermodynamics will be described.

Using these tracers, we show that rapid upregulation of glycolysis in *Escherichia coli* is accomplished by increasing the pathway's thermodynamic driving force. Specifically, in fast-growing cells, we observed $\Delta G < -2kJ/mol$ (i.e. forward flux > 2.2× backward flux) for most glycolytic reactions, reflecting efficient enzyme usage with enzymes mainly catalyzing the forward productive reaction. On the other hand, in nitrogen-limited cells with reduced glycolytic flux, in lower glycolysis, we observed $\Delta G \sim 0$ (forward flux \approx backward flux). Such a near-equilibrium situation is energy-efficient but enzyme-inefficient. The likely evolutionary benefit of inefficient enzyme usage became manifest upon nitrogen upshift: by shifting from reversible to forward-driven thermodynamics, rapid glycolysis and growth rate were restored within minutes, without requiring increased enzyme levels or activity. Thus, nutrient-rich cells can run glycolysis at near maximal enzyme capacity, whereas nutrient-limited cells sacrifice enzyme efficiency for fast adaptation. The 2 H- and 13 C-tracer methods developed here should be broadly useful for understanding glycolytic thermodynamics and regulation across strains, species, and environmental conditions.

References

- 1. Park, J. O., Rubin, S. A., Xu, Y. F., Amador-Noguez, D., Fan, J., Shlomi, T., and Rabinowitz, J. D. (2016). Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. *Nature Chemical Biology* 12(7): 482-489.
- 2. Park, J. O., Wei, M. H., Tanner, L. B., Amador-Noguez, D., Li, S., and Rabinowitz, J. D. (to be submitted). Glycolysis balances enzyme efficiency and metabolic adaptivity.

Funding: DOE DE-SC0012461